DOI QR코드

DOI QR Code

Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory

  • Bekkaye, Tahar Hacen Lamine (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Fahsi, Bouazza (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Al-Zahrani, Mesfer Mohammad (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • Received : 2020.07.16
  • Accepted : 2020.11.09
  • Published : 2020.11.25

Abstract

In this research, bending and buckling analyses of porous functionally graded (FG) plate under mechanical load are presented. The properties of the FG plate vary gradually across the thickness according to power-law and exponential functions. The material imperfection is considered to vary depending to a logarithmic function. The plate is modeled by a refined trigonometric shear deformation theory where the use of the shear correction factor is unnecessary. The governing equations of the FG plate are derived via virtual work principle and resolved via Navier solutions. The accuracy of the present model is checked by comparing the obtained results with those found in the literature. The various effects influencing the stresses, displacements and critical buckling loads of the plate are also examined and discussed in detail.

Keywords

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.
  4. Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
  5. Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226, 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
  6. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  7. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
  8. Ashjari, M. and Khoshravan, M.R. (2014), "Mass optimization of functionally graded plate for mechanical loading in the presence of deflection and stress constraints", Compos. Struct., 110, 118-132. https://doi.org/10.1016/j.compstruct.2013.11.025.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Babaei, H., Kiani, Y. and Reza Eslami, M. (2019), "Thermal buckling and post-buckling analysis of geometrically imperfect FGM clamped tubes on nonlinear elastic foundation", Appl. Math. Model., https://doi.org/10.1016/j.apm.2019.02.009.
  11. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  12. Bhangale, R.K. and Ganesan, N. (2006), "Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates", Int. J. Solid. Struct., 43(10), 3230-3253. https://doi.org/10.1016/j.ijsolstr.2005.05.030.
  13. Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
  14. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  15. Burlayenko, V.N., Altenbach, H., Sadowski, T. and Dimitrova, S.D. (2016), "Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate", Comput. Mater. Sci., 116, 11-21. https://doi.org/10.1016/j.commatsci.2015.08.038.
  16. Chandra, B.M., K, Ramji, K., Kar, V.R., Panda, S.K., Lalepalli, K.A. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/SEM.2018.68.5.527.
  17. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  18. Dai, K.Y., Liu, G.R., Lim, K.M., Han, X. and Du, S.Y. (2004), "A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates", Comput. Mech., 34(3), 213-223. https://doi.org/10.1007/s00466-004-0566-0.
  19. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/EAS.2019.16.1.055.
  20. Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015.
  21. Do, V.T., Pham, V.V. and Nguyen, H.N. (2020), "On the development of refined plate theory for static bending behavior of functionally graded plates", Math. Prob. Eng., 1-13. https://doi.org/10.1155/2020/2836763.
  22. Duc, N.D and Cong, P.H. (2015), "Nonlinear dynamic response of imperfect symmetric thin sigmoid-functionally graded material plate with metal-ceramic-metal layers on elastic foundation", J. Vib. Control, 21, 637-646. https://doi.org/10.1177/1077546313489717.
  23. Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
  24. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
  25. Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech.-A/Solid., 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008.
  26. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates". J Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
  27. Fazzolari, F.A. (2016), "Stability analysis of FGM sandwich plates by using variable-kinematics Ritz models", Mech. Adv. Mater. Struct., 23(9), 1104-1113. https://doi.org/10.1080/15376494.2015.1121559.
  28. Fenjan, N.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
  29. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati. M.R. and Hamouda, A. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus., 135, 81. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  30. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  31. Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108-109, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.
  32. Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory", Int. J. Mech. Mater. Des., 14(2), 277-296. https://doi.org/10.1007/s10999-017-9369-2.
  33. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  34. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  35. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179.
  36. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  37. Hassan, A. and Kurgan, N. (2020), "Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method", Eng. Sci. Technol., 23(4), 788-800. https://doi.org/10.1016/j.jestch.2020.03.009.
  38. Jadhav, P.A. and Bajoria, K.M. (2012), "Buckling of piezoelectric functionally graded plate subjected to electro-mechanical loading", Smart Mater. Struct., 21(10), 105005. https://doi.org/10.1088/0964-1726/21/10/105005.
  39. Jomehzadeh, E., Saidi, A.R. and Atashipour, S.R. (2009), "An analytical approach for stress analysis of functionally graded annular sector plates", Mater. Des., 30(9), 3679-3685. https://doi.org/10.1016/j.matdes.2009.02.011.
  40. Jung, W.Y., Han, S.C. and Park, W.T. (2016), "Four-variable refined plate theory for forced vibration analysis of sigmoid functionally graded plates on elastic foundation", J. Mech. Sci., 111, 73-87. https://doi.org/10.1016/j.ijmecsci.2016.03.001.
  41. Kar, V.R. and Panda, S.K. (2014), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control., 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102.
  42. Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/SCS.2015.18.3.693.
  43. Kar, V.R. and Panda, S.K. (2015b), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Solid. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691.
  44. Kar, V.R. and Panda, S.K. (2015c), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/SEM.2015.53.4.661.
  45. Kar, V.R. and Panda, S.K. (2015d), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
  46. Kar, V.R. and Panda, S.K. (2016a), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115-116, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
  47. Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/ hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Ves. Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.
  48. Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.j055878.
  49. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  50. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv Mater. Res., 5(4), 205-221. https://doi.org/10.12989/AMR.2016.5.4.205.
  51. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002
  52. Khoa, N.D., Thiem, H.T. and Duc, N.D. (2017), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2017.1341583.
  53. Koizumi, M. (1993), "The concept of FGM", Ceram. Tran. Funct. Grad. Mater., 34, 3-10.
  54. Kumar, R., Dutta, S.C. and Panda, S.K. (2016), "Linear and non-linear dynamic instability of functionally graded plate subjected to non-uniform loading", Compos. Struct., 154, 219-230. https://doi.org/10.1016/j.compstruct.2016.07.050.
  55. Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2018), "New transverse shear deformation theory for bending analysis of fgm plate under patch load", Compos. Struct., 208, 91-100. https://doi.org/10.1016/j.compstruct.2018.10.014.
  56. Lanhe, W., Hongjun, W. and Daobin, W. (2007), "Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011.
  57. Li, Z., Zheng, J., Sun, Q. and He, H. (2019), "Nonlinear structural stability performance of pressurized thin-walled FGM arches under temperature variation field", Int. J. Nonlin. Mech., 113, 86-102. https://doi.org/10.1016/j.ijnonlinmec.2019.03.016.
  58. Mantari, J.L. and Guedes Soares, C. (2012b), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos. Struct., 94(6), 1991-2000. https://doi.org/10.1016/j.compstruct.2012.01.005.
  59. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012a), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
  60. Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.
  61. Mehar, K. and Panda, S.K. (2017), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135.
  62. Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/SEM.2018.67.6.565.
  63. Mehar, K. and Panda, S.K. (2019), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mechanica, 231(3), 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  64. Mehar, K., Kumar Panda, S., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414, https://doi.org/10.1016/j.compstruct.2019.03.002.
  65. Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
  66. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  67. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/s175882511850028x.
  68. Mehar, K., Panda, S.K. and Patle, B.K. (2018b), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  69. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
  70. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  71. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019a), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  72. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/GAE.2020.22.4.361.
  73. Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(9), 1831-1841. https://doi.org/10.1243/09544062jmes1804.
  74. Moita, J.S., Araujo, A.L., Correia, V.F., Mota Soares, C.M. and Herskovits, J. (2019), "Buckling behavior of composite and functionally graded material plates", Eur. J. Mech.-A/Solid., 103921. https://doi.org/10.1016/j.euromechsol.2019.103921.
  75. Monge, J.C. and Mantari, J.L. (2020), "3D elasticity numerical solution for the static behavior of FGM shells", Eng. Struct., 208, 110159. https://doi.org/10.1016/j.engstruct.2019.110159.
  76. Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215
  77. Nguyen, T.K. (2014), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
  78. Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83(1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
  79. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  80. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  81. Rachedi, M. A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/GAE.2020.22.1.065.
  82. Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020a), "Static deflection simulation study of 2D Functionally graded porous structure", Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2020.03.537.
  83. Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S. (2020b), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (Power-law, sigmoid and exponential) and variable porosity (even/uneven)", Scientia Iranica. https://doi.org/10.24200/sci.2020.55581.4290.
  84. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.
  85. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams Using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  86. Sahraee, S. (2009), "Bending analysis of functionally graded sectorial plates using Levinson plate theory", Compos. Struct., 88(4), 548-557. https://doi.org/10.1016/j.compstruct.2008.05.014.
  87. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  88. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001.
  89. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  90. Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062.
  91. Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
  92. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  93. That, H.L.T., Nguyen-Van, H. and Chau-Dinh, T. (2020), "Nonlinear bending analysis of functionally graded plates using SQ4T elements based on twice interpolation strategy", J. Appl. Comput. Mech., 6(1), 125-136. https://doi.org/10.22055/JACM.2019.29270.1577.
  94. Timesli, A. (2019), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
  95. Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053.
  96. Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory" Adv. Nano Res., 9(2), 69-82. https://doi.org/10.1007/s42452-020-2182-9.
  97. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
  98. Wattanasakulpong, N. and Ungbhakor, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32, 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  99. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
  100. Wu, C.P. and Li, H.Y. (2010), "An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates", Compos. Struct., 92(10), 2591-2605. https://doi.org/10.1016/j.compstruct.2010.01.022.
  101. Xiang, S. and Kang, G. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech.-A/Solid., 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005.
  102. Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/s0263-8223(01)00122-2.
  103. Yuan, Y., Zhao, K., Sahmani, S. and Safaei, B. (2020), "Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes", Appl. Math. Mech.-Engl. Ed., 41, 587-604. https://doi.org/10.1007/s10483-020-2600-6.
  104. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  105. Zhao, J., Zhang, Y., Choe, K., Qu, X., Wang, A. and Wang, Q. (2019), "Three-dimensional exact solution for the free vibration of thick functionally graded annular sector plates with arbitrary boundary conditions", Compos. Part B: Eng., 159, 418-436. https://doi.org/10.1016/j.compositesb.2018.09.107.
  106. Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.

Cited by

  1. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2020, https://doi.org/10.12989/mwt.2020.11.6.399
  2. On the Finite Element Model of Rotating Functionally Graded Graphene Beams Resting on Elastic Foundation vol.2021, 2021, https://doi.org/10.1155/2021/1586388
  3. Free Vibration Exploration of Rotating FGM Porosity Beams under Axial Load considering the Initial Geometrical Imperfection vol.2021, 2020, https://doi.org/10.1155/2021/5519946
  4. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
  5. A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2020, https://doi.org/10.1108/aeat-01-2021-0012
  6. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  7. Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2020, https://doi.org/10.1093/jcde/qwab043
  8. Compressive mechanical behavior and model of composite elastic-porous metal materials vol.8, pp.12, 2020, https://doi.org/10.1088/2053-1591/ac40b5