References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.
- Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
- Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226, 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
- Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
- Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
- Ashjari, M. and Khoshravan, M.R. (2014), "Mass optimization of functionally graded plate for mechanical loading in the presence of deflection and stress constraints", Compos. Struct., 110, 118-132. https://doi.org/10.1016/j.compstruct.2013.11.025.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Babaei, H., Kiani, Y. and Reza Eslami, M. (2019), "Thermal buckling and post-buckling analysis of geometrically imperfect FGM clamped tubes on nonlinear elastic foundation", Appl. Math. Model., https://doi.org/10.1016/j.apm.2019.02.009.
- Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
- Bhangale, R.K. and Ganesan, N. (2006), "Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates", Int. J. Solid. Struct., 43(10), 3230-3253. https://doi.org/10.1016/j.ijsolstr.2005.05.030.
- Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Burlayenko, V.N., Altenbach, H., Sadowski, T. and Dimitrova, S.D. (2016), "Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate", Comput. Mater. Sci., 116, 11-21. https://doi.org/10.1016/j.commatsci.2015.08.038.
- Chandra, B.M., K, Ramji, K., Kar, V.R., Panda, S.K., Lalepalli, K.A. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/SEM.2018.68.5.527.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Dai, K.Y., Liu, G.R., Lim, K.M., Han, X. and Du, S.Y. (2004), "A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates", Comput. Mech., 34(3), 213-223. https://doi.org/10.1007/s00466-004-0566-0.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/EAS.2019.16.1.055.
- Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015.
- Do, V.T., Pham, V.V. and Nguyen, H.N. (2020), "On the development of refined plate theory for static bending behavior of functionally graded plates", Math. Prob. Eng., 1-13. https://doi.org/10.1155/2020/2836763.
- Duc, N.D and Cong, P.H. (2015), "Nonlinear dynamic response of imperfect symmetric thin sigmoid-functionally graded material plate with metal-ceramic-metal layers on elastic foundation", J. Vib. Control, 21, 637-646. https://doi.org/10.1177/1077546313489717.
- Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
- Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
- Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech.-A/Solid., 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008.
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates". J Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
- Fazzolari, F.A. (2016), "Stability analysis of FGM sandwich plates by using variable-kinematics Ritz models", Mech. Adv. Mater. Struct., 23(9), 1104-1113. https://doi.org/10.1080/15376494.2015.1121559.
- Fenjan, N.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
- Forsat, M., Badnava, S., Mirjavadi, S.S., Barati. M.R. and Hamouda, A. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus., 135, 81. https://doi.org/10.1140/epjp/s13360-019-00042-x.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
- Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108-109, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.
- Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory", Int. J. Mech. Mater. Des., 14(2), 277-296. https://doi.org/10.1007/s10999-017-9369-2.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Hassan, A. and Kurgan, N. (2020), "Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method", Eng. Sci. Technol., 23(4), 788-800. https://doi.org/10.1016/j.jestch.2020.03.009.
- Jadhav, P.A. and Bajoria, K.M. (2012), "Buckling of piezoelectric functionally graded plate subjected to electro-mechanical loading", Smart Mater. Struct., 21(10), 105005. https://doi.org/10.1088/0964-1726/21/10/105005.
- Jomehzadeh, E., Saidi, A.R. and Atashipour, S.R. (2009), "An analytical approach for stress analysis of functionally graded annular sector plates", Mater. Des., 30(9), 3679-3685. https://doi.org/10.1016/j.matdes.2009.02.011.
- Jung, W.Y., Han, S.C. and Park, W.T. (2016), "Four-variable refined plate theory for forced vibration analysis of sigmoid functionally graded plates on elastic foundation", J. Mech. Sci., 111, 73-87. https://doi.org/10.1016/j.ijmecsci.2016.03.001.
- Kar, V.R. and Panda, S.K. (2014), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control., 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102.
- Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/SCS.2015.18.3.693.
- Kar, V.R. and Panda, S.K. (2015b), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Solid. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691.
- Kar, V.R. and Panda, S.K. (2015c), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/SEM.2015.53.4.661.
- Kar, V.R. and Panda, S.K. (2015d), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
- Kar, V.R. and Panda, S.K. (2016a), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115-116, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
- Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/ hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Ves. Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.
- Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.j055878.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv Mater. Res., 5(4), 205-221. https://doi.org/10.12989/AMR.2016.5.4.205.
- Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002
- Khoa, N.D., Thiem, H.T. and Duc, N.D. (2017), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2017.1341583.
- Koizumi, M. (1993), "The concept of FGM", Ceram. Tran. Funct. Grad. Mater., 34, 3-10.
- Kumar, R., Dutta, S.C. and Panda, S.K. (2016), "Linear and non-linear dynamic instability of functionally graded plate subjected to non-uniform loading", Compos. Struct., 154, 219-230. https://doi.org/10.1016/j.compstruct.2016.07.050.
- Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2018), "New transverse shear deformation theory for bending analysis of fgm plate under patch load", Compos. Struct., 208, 91-100. https://doi.org/10.1016/j.compstruct.2018.10.014.
- Lanhe, W., Hongjun, W. and Daobin, W. (2007), "Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011.
- Li, Z., Zheng, J., Sun, Q. and He, H. (2019), "Nonlinear structural stability performance of pressurized thin-walled FGM arches under temperature variation field", Int. J. Nonlin. Mech., 113, 86-102. https://doi.org/10.1016/j.ijnonlinmec.2019.03.016.
- Mantari, J.L. and Guedes Soares, C. (2012b), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos. Struct., 94(6), 1991-2000. https://doi.org/10.1016/j.compstruct.2012.01.005.
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012a), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.
- Mehar, K. and Panda, S.K. (2017), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135.
- Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/SEM.2018.67.6.565.
- Mehar, K. and Panda, S.K. (2019), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mechanica, 231(3), 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
- Mehar, K., Kumar Panda, S., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414, https://doi.org/10.1016/j.compstruct.2019.03.002.
- Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/s175882511850028x.
- Mehar, K., Panda, S.K. and Patle, B.K. (2018b), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019a), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
- Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/GAE.2020.22.4.361.
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(9), 1831-1841. https://doi.org/10.1243/09544062jmes1804.
- Moita, J.S., Araujo, A.L., Correia, V.F., Mota Soares, C.M. and Herskovits, J. (2019), "Buckling behavior of composite and functionally graded material plates", Eur. J. Mech.-A/Solid., 103921. https://doi.org/10.1016/j.euromechsol.2019.103921.
- Monge, J.C. and Mantari, J.L. (2020), "3D elasticity numerical solution for the static behavior of FGM shells", Eng. Struct., 208, 110159. https://doi.org/10.1016/j.engstruct.2019.110159.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215
- Nguyen, T.K. (2014), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83(1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
- Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Rachedi, M. A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/GAE.2020.22.1.065.
- Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020a), "Static deflection simulation study of 2D Functionally graded porous structure", Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2020.03.537.
- Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S. (2020b), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (Power-law, sigmoid and exponential) and variable porosity (even/uneven)", Scientia Iranica. https://doi.org/10.24200/sci.2020.55581.4290.
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams Using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
- Sahraee, S. (2009), "Bending analysis of functionally graded sectorial plates using Levinson plate theory", Compos. Struct., 88(4), 548-557. https://doi.org/10.1016/j.compstruct.2008.05.014.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062.
- Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
- That, H.L.T., Nguyen-Van, H. and Chau-Dinh, T. (2020), "Nonlinear bending analysis of functionally graded plates using SQ4T elements based on twice interpolation strategy", J. Appl. Comput. Mech., 6(1), 125-136. https://doi.org/10.22055/JACM.2019.29270.1577.
- Timesli, A. (2019), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
- Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053.
- Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory" Adv. Nano Res., 9(2), 69-82. https://doi.org/10.1007/s42452-020-2182-9.
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
- Wattanasakulpong, N. and Ungbhakor, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32, 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
- Wu, C.P. and Li, H.Y. (2010), "An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates", Compos. Struct., 92(10), 2591-2605. https://doi.org/10.1016/j.compstruct.2010.01.022.
- Xiang, S. and Kang, G. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech.-A/Solid., 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005.
- Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/s0263-8223(01)00122-2.
- Yuan, Y., Zhao, K., Sahmani, S. and Safaei, B. (2020), "Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes", Appl. Math. Mech.-Engl. Ed., 41, 587-604. https://doi.org/10.1007/s10483-020-2600-6.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zhao, J., Zhang, Y., Choe, K., Qu, X., Wang, A. and Wang, Q. (2019), "Three-dimensional exact solution for the free vibration of thick functionally graded annular sector plates with arbitrary boundary conditions", Compos. Part B: Eng., 159, 418-436. https://doi.org/10.1016/j.compositesb.2018.09.107.
- Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.
Cited by
- A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2020, https://doi.org/10.12989/mwt.2020.11.6.399
- On the Finite Element Model of Rotating Functionally Graded Graphene Beams Resting on Elastic Foundation vol.2021, 2021, https://doi.org/10.1155/2021/1586388
- Free Vibration Exploration of Rotating FGM Porosity Beams under Axial Load considering the Initial Geometrical Imperfection vol.2021, 2020, https://doi.org/10.1155/2021/5519946
- Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
- A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2020, https://doi.org/10.1108/aeat-01-2021-0012
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2020, https://doi.org/10.1093/jcde/qwab043
- Compressive mechanical behavior and model of composite elastic-porous metal materials vol.8, pp.12, 2020, https://doi.org/10.1088/2053-1591/ac40b5