Acknowledgement
The work reported in this paper is supported by the Youth Fund of Colleges and Universities in Hebei Province Science and Technology Research Project (Grant No. QN2019024)
References
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res., 4(1), 31. https://doi.org/10.12989/amr.2015.4.4.031.
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
- Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Amoushahi, H. (2018), "Time depended deformation and buckling of viscoelastic thick plates by a fully discretized finite strip method using third order shear deformation theory", Eur. J. Mech. Solid., 68, 38-52. https://doi.org/10.1016/j.euromechsol.2017.11.003.
- An, D., Xu, D., Ni, Z., Su, Y., Wang, B. and Li, R. (2020) "Finite integral transform method for analytical solutions of static problems of cylindrical shell panels", Eur. J. Mech. Solid., 104033. https://doi.org/10.1016/j.euromechsol.2020.104033.
- Arefi, M., Saeed, F., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
- Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory", Arch. Appl. Mech., 90, 1755-1769 https://doi.org/10.1007/s00419-020-01694-3.
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
- Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
- Civalek, O. and Avcar, M (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
- Civalek, O., Dastjerdi, S. and Akgoz, B. (2020), "Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1766494.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020) "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Dastjerdi, S., Akgo, B. and Civalek, O. (2020), "On the effect of viscoelasticity on behavior of gyroscopes", Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236.
- Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
- Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
- Gorman, D.J. and Yu, S.D. (2012) "A review of the superposition method for computing free vibration eigenvalues of elastic structures", Comput. Struct., 104, 27-37. https://doi.org/10.1016/j.compstruc.2012.02.018.
- Guo, H., Cao, S., Yang, T. and Chen, Y. (2018), "Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Int. J. Mech. Sci., 142-143, 610-621. https://doi.org/10.1016/j.ijmecsci.2018.05.029.
- Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.
- Hu, Z., Yang, Y., Zhou, C., Zheng, X. and Li, R. (2020), "On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates", J. Sound Vib., 115695. https://doi.org/10.1016/j.jsv.2020.115695.
- Hu, Z., Zheng, X., An, D., Zhou, C., Yang, Y. and Li, R. (2021), "New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method", Int. J. Mech. Sci., 191, 106051. https://doi.org/10.1016/j.ijmecsci.2020.106051.
- Jaberzadeh, E., Azhari, M. and Boroomand, B. (2013), "Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free Galerkin method", Appl. Math. Model., 37(10-11), 6838-6854. https://doi.org/10.1016/j.apm.2013.01.055.
- Jafari, N. and Azhari, M. (2017), "Buckling of moderately thick arbitrarily shaped plates with intermediate point supports using a simple hp-cloud method", Appl. Math. Comput., 313, 196-208. https://doi.org/10.1016/j.amc.2017.05.079.
- Jalaei, M. and Civalek, O. (2019b), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Jalaei, M.H. and Civalek, O. (2019a), "A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects", Compos. Struct., 220, 209-220. https://doi.org/10.1016/j.compstruct.2019.03.086.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Li, R., Wang, H., Zheng, X., Xiong, S., Hu, Z., Yan, X., Xiao, Z., Xu, H. and Li, P. (2019a), "New analytic buckling solutions of rectangular thin plates with two free adjacent edges by the symplectic superposition method", Eur. J. Mech. Solid., 76, 247-262. https://doi.org/10.1016/j.euromechsol.2019.04.014.
- Li, R., Zheng, X., Wang, P., Wang, B., Wu, H., Cao, Y. and Zhu, Z. (2019b), "New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach", Acta Mech., 230(9), 3087-3101. https://doi.org/10.1007/s00707-019-02448-1.
- Li, R., Zheng, X., Yang, Y., Huang, M. and Huang, X. (2019c), "Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels", Appl. Math. Model., 76, 900-917. https://doi.org/10.1016/j.apm.2019.07.020.
- Li, R., Zhong, Y., Tian, B. and Liu, Y. (2009), "On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates", Appl. Math. Lett., 22(12), 1821-1827. https://doi.org/10.1016/j.aml.2009.07.003.
- Li, R., Zhou, C. and Zheng, X. (2020), "On new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method within the Hamiltonian-system framework", J. Vib. Acoust., 143(1), 011002. https://doi.org/10.1115/1.4047701.
- Mashat, D.S., Zenkour, A.M. and Radwan, A.F. (2020). "A quasi 3-D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity", Eur. J. Mech. A Solid., 103985. https://doi.org/10.1016/j.euromechsol.2020.103985.
- Moradi, S. and Mansouri, M.H. (2012), "Thermal buckling analysis of shear deformable laminated orthotopic plates by differential quadrature", Steel Compos. Struct., 12(2), 129-147. https://doi.org/10.12989/scs.2012.12.2.129.
- Rad, H.K., Ghalehnovi, M. and Shariatmadar, H. (2019), "Boundary characteristic orthogonal polynomials method in the vibration analysis of multi-span plates acting upon a moving mass", Heliyon, 5(6), e01919. https://doi.org/10.1016/j.heliyon.2019.e01919.
- Refrafi, S., Bousahla, A. A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
- Sobhy, M. and Zenkour, A.M. (2020), "The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations", Mech. Adv. Mater. Struct., 27(7), 525-538. https://doi.org/10.1080/15376494.2018.1482579.
- Taherifar, R., Mahmoudi, M., Nasr Esfahani, M.H., Khuzani, N.A., Esfahani, S.N. and Chinaei, F. (2019), "Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles", Comput. Concrete, 23(4), 295-301. https://doi.org/10.12989/cac.2019.23.4.295.
- Uzun, B. and Civalek, O. (2019), "Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials", Math. Comput. Appl., 24(2), 38. https://doi.org/10.3390/mca24020038.
- Wu, W.X., Shu, C., Wang, C.M. and Xiang, Y. (2010), "Free vibration and buckling analysis of highly skewed plates by least squares-based finite difference method", Int. J. Struct. Stab. Dyn., 10(02), 225-252. https://doi.org/10.1142/S021945541000349X.
- Wunsche, M., Garcia-Sanchez, F. and Saez, A. (2012), "Analysis of anisotropic Kirchhoff plates using a novel hypersingular BEM", Comput. Mech., 49(5), 629-641. https://doi.org/10.1007/s00466-011-0666-6.
- Xing, Y. and Liu, B. (2009), "New exact solutions for free vibrations of rectangular thin plates by symplectic dual method", Acta Mech. Sin., 25(2), 265. https://doi.org/10.1007/s10409-008-0208-4.
- Xing, Y. and Wang, Z. (2020). "An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates", Int. J. Mech. Sci., 105739. https://doi.org/10.1016/j.ijmecsci.2020.105739.
- Xing, Y.F., Wu, Y., Liu, B., Ferreira, A.J.M. and Neves, A.M.A. (2017), "Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method", Compos. Struct., 170, 158-168. https://doi.org/10.1016/j.compstruct.2017.02.092.
- Yang, Y., Chen, X.L. and Zhang, W.W. (2014), "Development of energy finite element analysis in vibration analysis of composite laminate plate structures", Appl. Mech. Mater., 470, 1020-1023. https://doi.org/10.4028/www.scientific.net/AMM.470.1020.
- Zenkour, A.M. (2018a), "Trigonometric solution for an exponentially graded thick plate resting on elastic foundations", Arch. Mech. Eng., 65(2), 193-208. https://doi.org/10.24425/123020.
- Zenkour, A.M. (2018b), "Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium", Eur. Phys. J. Plus, 133, 196. https://doi.org/10.1140/epjp/i2018-12014-2.
- Zenkour, A.M. (2018c), "A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates", Compos. Struct., 185, 821-833. https://doi.org/10.1016/j.compstruct.2017.10.085.
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
- Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
- Zenkour, A.M. and Radwan, A.F. (2020), "Nonlocal mixed variational formula for orthotropic nanoplates resting on elastic foundations", Eur. Phys. J. Plus, 135, 493. https://doi.org/10.1140/epjp/s13360-020-00504-7.
- Zenkour, A.M., Hafed, Z.S. and Radwan, A.F. (2020), "Bending analysis of functionally graded nanoscale plates by using nonlocal mixed variational formula", Mathemat., 8, 1162. https://doi.org/10.3390/math8071162.
- Zhang, J., Zhou, C., Ullah, S., Zhong, Y. and Li, R. (2019), "Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates", Appl. Math. Lett., 92, 8-14. https://doi.org/10.1016/j.aml.2018.12.019.
Cited by
- Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7