DOI QR코드

DOI QR Code

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University) ;
  • Ullah, Salamat (Department of Civil Engineering, Sarhad University of Science and Information Technology) ;
  • Gao, Yuanyuan (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University) ;
  • Avcar, Mehmet (Department of Civil Engineering, Suleyman Demirel University) ;
  • Civalek, Omer (China Medical University)
  • Received : 2020.06.19
  • Accepted : 2020.11.03
  • Published : 2020.11.25

Abstract

In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

Keywords

Acknowledgement

The work reported in this paper is supported by the Youth Fund of Colleges and Universities in Hebei Province Science and Technology Research Project (Grant No. QN2019024)

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res., 4(1), 31. https://doi.org/10.12989/amr.2015.4.4.031.
  2. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  3. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  4. Amoushahi, H. (2018), "Time depended deformation and buckling of viscoelastic thick plates by a fully discretized finite strip method using third order shear deformation theory", Eur. J. Mech. Solid., 68, 38-52. https://doi.org/10.1016/j.euromechsol.2017.11.003.
  5. An, D., Xu, D., Ni, Z., Su, Y., Wang, B. and Li, R. (2020) "Finite integral transform method for analytical solutions of static problems of cylindrical shell panels", Eur. J. Mech. Solid., 104033. https://doi.org/10.1016/j.euromechsol.2020.104033.
  6. Arefi, M., Saeed, F., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
  7. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  8. Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory", Arch. Appl. Mech., 90, 1755-1769 https://doi.org/10.1007/s00419-020-01694-3.
  9. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  10. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  11. Civalek, O. and Avcar, M (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.
  12. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
  13. Civalek, O., Dastjerdi, S. and Akgoz, B. (2020), "Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1766494.
  14. Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020) "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  15. Dastjerdi, S., Akgo, B. and Civalek, O. (2020), "On the effect of viscoelasticity on behavior of gyroscopes", Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236.
  16. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  17. Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
  18. Gorman, D.J. and Yu, S.D. (2012) "A review of the superposition method for computing free vibration eigenvalues of elastic structures", Comput. Struct., 104, 27-37. https://doi.org/10.1016/j.compstruc.2012.02.018.
  19. Guo, H., Cao, S., Yang, T. and Chen, Y. (2018), "Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Int. J. Mech. Sci., 142-143, 610-621. https://doi.org/10.1016/j.ijmecsci.2018.05.029.
  20. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.
  21. Hu, Z., Yang, Y., Zhou, C., Zheng, X. and Li, R. (2020), "On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates", J. Sound Vib., 115695. https://doi.org/10.1016/j.jsv.2020.115695.
  22. Hu, Z., Zheng, X., An, D., Zhou, C., Yang, Y. and Li, R. (2021), "New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method", Int. J. Mech. Sci., 191, 106051. https://doi.org/10.1016/j.ijmecsci.2020.106051.
  23. Jaberzadeh, E., Azhari, M. and Boroomand, B. (2013), "Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free Galerkin method", Appl. Math. Model., 37(10-11), 6838-6854. https://doi.org/10.1016/j.apm.2013.01.055.
  24. Jafari, N. and Azhari, M. (2017), "Buckling of moderately thick arbitrarily shaped plates with intermediate point supports using a simple hp-cloud method", Appl. Math. Comput., 313, 196-208. https://doi.org/10.1016/j.amc.2017.05.079.
  25. Jalaei, M. and Civalek, O. (2019b), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  26. Jalaei, M.H. and Civalek, O. (2019a), "A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects", Compos. Struct., 220, 209-220. https://doi.org/10.1016/j.compstruct.2019.03.086.
  27. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  28. Li, R., Wang, H., Zheng, X., Xiong, S., Hu, Z., Yan, X., Xiao, Z., Xu, H. and Li, P. (2019a), "New analytic buckling solutions of rectangular thin plates with two free adjacent edges by the symplectic superposition method", Eur. J. Mech. Solid., 76, 247-262. https://doi.org/10.1016/j.euromechsol.2019.04.014.
  29. Li, R., Zheng, X., Wang, P., Wang, B., Wu, H., Cao, Y. and Zhu, Z. (2019b), "New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach", Acta Mech., 230(9), 3087-3101. https://doi.org/10.1007/s00707-019-02448-1.
  30. Li, R., Zheng, X., Yang, Y., Huang, M. and Huang, X. (2019c), "Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels", Appl. Math. Model., 76, 900-917. https://doi.org/10.1016/j.apm.2019.07.020.
  31. Li, R., Zhong, Y., Tian, B. and Liu, Y. (2009), "On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates", Appl. Math. Lett., 22(12), 1821-1827. https://doi.org/10.1016/j.aml.2009.07.003.
  32. Li, R., Zhou, C. and Zheng, X. (2020), "On new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method within the Hamiltonian-system framework", J. Vib. Acoust., 143(1), 011002. https://doi.org/10.1115/1.4047701.
  33. Mashat, D.S., Zenkour, A.M. and Radwan, A.F. (2020). "A quasi 3-D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity", Eur. J. Mech. A Solid., 103985. https://doi.org/10.1016/j.euromechsol.2020.103985.
  34. Moradi, S. and Mansouri, M.H. (2012), "Thermal buckling analysis of shear deformable laminated orthotopic plates by differential quadrature", Steel Compos. Struct., 12(2), 129-147. https://doi.org/10.12989/scs.2012.12.2.129.
  35. Rad, H.K., Ghalehnovi, M. and Shariatmadar, H. (2019), "Boundary characteristic orthogonal polynomials method in the vibration analysis of multi-span plates acting upon a moving mass", Heliyon, 5(6), e01919. https://doi.org/10.1016/j.heliyon.2019.e01919.
  36. Refrafi, S., Bousahla, A. A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  37. Sobhy, M. and Zenkour, A.M. (2020), "The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations", Mech. Adv. Mater. Struct., 27(7), 525-538. https://doi.org/10.1080/15376494.2018.1482579.
  38. Taherifar, R., Mahmoudi, M., Nasr Esfahani, M.H., Khuzani, N.A., Esfahani, S.N. and Chinaei, F. (2019), "Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles", Comput. Concrete, 23(4), 295-301. https://doi.org/10.12989/cac.2019.23.4.295.
  39. Uzun, B. and Civalek, O. (2019), "Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials", Math. Comput. Appl., 24(2), 38. https://doi.org/10.3390/mca24020038.
  40. Wu, W.X., Shu, C., Wang, C.M. and Xiang, Y. (2010), "Free vibration and buckling analysis of highly skewed plates by least squares-based finite difference method", Int. J. Struct. Stab. Dyn., 10(02), 225-252. https://doi.org/10.1142/S021945541000349X.
  41. Wunsche, M., Garcia-Sanchez, F. and Saez, A. (2012), "Analysis of anisotropic Kirchhoff plates using a novel hypersingular BEM", Comput. Mech., 49(5), 629-641. https://doi.org/10.1007/s00466-011-0666-6.
  42. Xing, Y. and Liu, B. (2009), "New exact solutions for free vibrations of rectangular thin plates by symplectic dual method", Acta Mech. Sin., 25(2), 265. https://doi.org/10.1007/s10409-008-0208-4.
  43. Xing, Y. and Wang, Z. (2020). "An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates", Int. J. Mech. Sci., 105739. https://doi.org/10.1016/j.ijmecsci.2020.105739.
  44. Xing, Y.F., Wu, Y., Liu, B., Ferreira, A.J.M. and Neves, A.M.A. (2017), "Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method", Compos. Struct., 170, 158-168. https://doi.org/10.1016/j.compstruct.2017.02.092.
  45. Yang, Y., Chen, X.L. and Zhang, W.W. (2014), "Development of energy finite element analysis in vibration analysis of composite laminate plate structures", Appl. Mech. Mater., 470, 1020-1023. https://doi.org/10.4028/www.scientific.net/AMM.470.1020.
  46. Zenkour, A.M. (2018a), "Trigonometric solution for an exponentially graded thick plate resting on elastic foundations", Arch. Mech. Eng., 65(2), 193-208. https://doi.org/10.24425/123020.
  47. Zenkour, A.M. (2018b), "Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium", Eur. Phys. J. Plus, 133, 196. https://doi.org/10.1140/epjp/i2018-12014-2.
  48. Zenkour, A.M. (2018c), "A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates", Compos. Struct., 185, 821-833. https://doi.org/10.1016/j.compstruct.2017.10.085.
  49. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
  50. Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
  51. Zenkour, A.M. and Radwan, A.F. (2020), "Nonlocal mixed variational formula for orthotropic nanoplates resting on elastic foundations", Eur. Phys. J. Plus, 135, 493. https://doi.org/10.1140/epjp/s13360-020-00504-7.
  52. Zenkour, A.M., Hafed, Z.S. and Radwan, A.F. (2020), "Bending analysis of functionally graded nanoscale plates by using nonlocal mixed variational formula", Mathemat., 8, 1162. https://doi.org/10.3390/math8071162.
  53. Zhang, J., Zhou, C., Ullah, S., Zhong, Y. and Li, R. (2019), "Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates", Appl. Math. Lett., 92, 8-14. https://doi.org/10.1016/j.aml.2018.12.019.

Cited by

  1. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7