References
- Ai, S., Jia, C. and Chen, Z. (2017), "Large-scale product classification via spatial attention based CNN learning and multi-class regression", Proceeding of International Conference on Multimedia Modeling (MMM), Reykjavik, Iceland, January, 176-188. https://doi.org/10.1007/978-3-319-51811-4_15.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aid. Civil Inf., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aid. Civil Inf., 33(9), 731-747. https://doi.org/10.1111/mice.12334.
- Chen, F.C. and Jahanshahi, M.R. (2018), "NB-CNN: deep learning-based crack detection using convolutional neural network and naive bayes data fusion", IEEE T. Ind. Electron., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844.
- Chen, L., Zhang, H., Xiao, J., Nie, L., Shao, J., Liu, W. and Chua, T.S. (2017), "SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning", Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, July. https://doi.org/10.1109/CVPR. 2017.667.
- Corbetta, M. and Shulman, G.L. (2002), "Control of goal-directed and stimulus-driven attention in the brain", Nat. Rev. Neurosci., 3(3), 215-229. https://doi.org/10.1038/nrn755.
- Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "SDNET2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks", Data Brief, 21, 1664-1668. https://doi.org/10.1016/j.dib.2018.11.015.
- Gavilan, M., Balcones, D., Marcos, O., Llorca, D.F., Sotelo, M.A., Parra, I., Ocana, M., Aliseda, P., Yarza, P. and Amirola, A. (2011), "Adaptive road crack detection system by pavement classification", Sensor., 11(10), 9628-9657. https://doi.org/10.3390/s111009628.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), LAS VEGAS, USA, June. https://doi.org/10.1109/CVPR.2016.90.
- Hu, J., Shen, L., Albanie, S., Sun, G. and Wu, E. (2019), "Squeeze-and-excitation networks", IEEE T. Pattern Anal. Mach. Intell., 42(8), 2011-2023. https://doi.org/10.1109/TPAMI.2019. 2913372.
- Itti, L., Koch, C. and Niebur, E. (1998), "A model of saliency-based visual attention for rapid scene analysis", IEEE T. Pattern Anal. Mach. Intell., 20(11), 1254-1259. https://doi.org/10.1109/34.730558.
- Kang, D. and Cha, Y.J. (2018), "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput.-Aid. Civil Inf., 33(10), 885-902. https://doi.org/10.1111/mice.12375.
- Kim, B. and Cho, S. (2018), "Automated vision-based detection of cracks on concrete surfaces using a deep learning technique", Sensor., 10(18), 3452. https://doi.org/10.3390/s18103452.
- Kim, H., Sim, S.H. and Cho, S. (2015), "Unmanned aerial vehicle (UAV)-powered concrete crack detection based on digital image processing", Proceedings of International Conference on Advances in Experimental Structural Engineering, Urbana-Champaign, USA, August.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Adv. Neural Inform. Process. Syst., 25(2), 1097-1105. https://doi.org/10.1145/3065386.
- LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791.
- Lee, D., Kim, J. and Lee, D. (2019), "Robust concrete crack detection using deep learning-based semantic segmentation", Int. J. Aeronaut. Spaces, 2019(20), 287-299. https://doi.org/10.1007/s42405-018-0120-5.
- Li, H., Chen, G., Li, G. and Yu, Y. (2019), "Motion guided attention for video salient object detection", Proceeding of IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, October. https://doi.org/10.1109/ICCV.2019.00737.
- Li, L.F., Ma, W.F., Li, L. and Lu, C. (2019), "Research on detection algorithm for bridge cracks based on deep learning", Acta Automatica Sinica, 45(9), 1727-1742. https://doi.org/10.16383/j.aas.2018.c170052.
- Lin, W., Sun, Y., Yang, Q. and Lin, Y. (2019), "Real-time comprehensive image processing system for detecting concrete bridges crack", Comput. Concrete, 23(6), 445-457. https://doi.org/10.12989/cac.2019.23.6.445.
- Mnih, V., Heess, N., Graves, A. and Kavukcuoglu, K. (2014), "Recurrent models of visual attention", Proceeding of Advance in Neural Information. Processing System, Montreal, Canada, December.
- Ozgenel, C.F. (2018), "Concrete crack images for classification", Mendeley Data, https://doi.org/10.17632/5y9wdsg2zt.1.
- Rensink, R.A. (2000), "The dynamic representation of scenes", J. Visual Cognition, 7, 17-42. https://doi.org/10.1080/135062800394667.
- Simonyan, K. and Zisserman, A. (2015), "Very deep convolutional networks for large-scale image recognition", Proceeding of 3rd International Conference on Learning Representations (ICLR), San Diego, USA, May.
- Su, T.C. and Yang, M. (2018), "Morphological segmentation based on edge detection-II for automatic concrete crack measurement", Comput. Concrete, 21(6), 727-739. https://doi.org/10.12989/cac.2018.21.6.727.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of IEEE Computer Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June. https://doi.org/10.1109/CVPR.2015.7298594.
- Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X. and Tang, X. (2017), "Residual attention network for image classification", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, July. https://doi.org/10.1109/CVPR.2017.683.
- Wang, P., Hu, Y., Dai, Y. and Tian, M. (2017), "Asphalt pavement pothole detection and segmentation based on wavelet energy field", Math. Probl. Eng., 2017(8), 1604130. https://doi.org/10.1155/2017/1604130.
- Woo, S., Park, J., Lee, J.Y. and Kweon, I.S. (2018), "CBAM: convolutional block attention module", Proceedings of European Conference on Computer Vision (ECCV), Munich, Germany, September.
- Xu, H., Su, X., Wang, Y., Cai, H., Cui, K. and Chen, X. (2019), "Automatic bridge crack detection using a convolutional neural network", Appl. Sci., 2019(9), 2867. https://doi.org/10.3390/app9142867.
- Xu, K., Ba, J.L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R.S. and Bengio, Y. (2015), "Show, attend and tell: Neural image caption generation with visual attention", Proceedings of International Conference on Machine Learning (ICML), Lile, France, July.
- Yeum, C.M. and Dyke, S.J. (2015), "Vision-based automated crack detection for bridge inspection", Comput.-Aid. Civil Inf., 30(10), 759-770. https://doi.org/10.1111/mice.12141.
- Yin, W., Schutze, H., Xiang, B. and Zhou, B. (2016), "ABCNN: attention-based convolutional neural network for modeling sentence pairs", https://arxiv.org/abs/1512.05193.
- Zeiler, M.D. and Fergus, R. (2014), "Visualizing and understanding convolutional networks", Proceedings of European Conference on Computer Vision (ECCV), Zurich, Switzerland, September.
- Zhang, X., Wang, T., Qi, J., Lu, H. and Wang, G. (2018), "Progressive attention guided recurrent network for salient object detection", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, June. https://doi.org/10.1109/CVPR.2018.00081.
- Zhao, G., Wang, T. and Ye, J. (2014), "Surface shape recognition method for crack detection", J. Electron. Imag., 23(3), 1267-1276. https://doi.org/10.1117/1.JEI.23.3.033013.
- Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q. and Wang, S. (2019), "DeepCrack: learning hierarchical convolutional features for crack detection", IEEE T. Image Process., 28(3), 1498-1512. https://doi.org/10.1109/TIP.2018.2878966.