DOI QR코드

DOI QR Code

A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets

  • Kar, Swapnasarit (Department of Civil Engineering, National Institute of Technology) ;
  • Biswal, K.C. (Department of Civil Engineering, National Institute of Technology)
  • 투고 : 2020.07.12
  • 심사 : 2020.10.23
  • 발행 : 2020.11.25

초록

The current study targets to estimate the contribution of the end-anchored FRP composites in resisting shear force using a soft computing tool i.e., adaptive neuro-fuzzy inference system (ANFIS). A total of 107 sets of data accumulated from literature was utilized for the development and evaluation of the current ANFIS model. A comparative analysis between the ANFIS predictions and the acquired experimental results has shown that the ANFIS predictions are in very good agreement with that of experimental ones. Additionally, the accuracy of the current ANFIS model has been weighed up against the estimates of nine widely adopted design guidelines. Based on various statistical parameters, it has been deduced that the effectiveness of the current ANFIS model is better than the considered design guidelines. Besides this, a parametric study was carried out to explore the combined effect of different parameters as well as the impact of individual parameters.

키워드

과제정보

The authors would like to thank the National Institute of Technology Rourkela, India for financial support.

참고문헌

  1. ACI 440.2R-08 (2008), Guide for the Design and Construction of Externally bonded FRP Systems for Strengthening Concrete Structures,.
  2. AS 5100.8 (2017), Bridge Design Rehabilitation and Strengthening of Existing Bridges.
  3. Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019a), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
  4. Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019b), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
  5. Bae, S.W. and Belarbi, A. (2012), "Behavior of various anchorage systems used for shear strengthening of concrete structures with externally bonded FRP sheets", J. Bridg. Eng., 18(9), 837-847. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000420.
  6. Baggio, D., Soudki, K. and Noel, M. (2014), "Strengthening of shear critical RC beams with various FRP systems", Constr. Build. Mater., 66, 634-644. https://doi.org/10.1016/j.conbuildmat.2014.05.097.
  7. Belarbi, A., Bae, S.W. and Brancaccio, A. (2012), "Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets", Constr. Build. Mater., 32, 27-40. https://doi.org/10.1016/j.conbuildmat.2010.11.102.
  8. Bourget, S., El-Saikaly, G. and Chaallal, O. (2017), "Behavior of reinforced concrete T-beams strengthened in shear using closed carbon fiber-reinforced polymer stirrups made of laminates and ropes", ACI Struct. J., 114(5), 1087-1098. https://doi.org/10.14359/51700786
  9. BS EN 1998-3 (2005), Eurocode 8-Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings.
  10. Chen, G.M., Zhang, Z., Li, Y.L., Li, X.Q. and Zhou, C.Y. (2016), "T-section RC beams shear-strengthened with anchored CFRP U-strips", Compos. Struct., 144, 57-79. https://doi.org/10.1016/j.compstruct.2016.02.033.
  11. CNR-DT 200 R1 (2013), Guide for the Design and Construction of Externally bonded FRP Systems for Strengthening Existing Structures.
  12. CSA S806-12 (2012), Design and Construction of Building Structures with Fiber Reinforced Polymers.
  13. DAfStb (2012), Strengthening of Concrete Members with Adhesively bonded Reinforcement.
  14. Deniaud, C. and Cheng, J.J.R. (2001), "Shear behavior of reinforced concrete T-beams with externally bonded fiber-reinforced polymer sheets", ACI Struct. J., 98(3), 386-394.
  15. Deniaud, C. and Roger Cheng, J.J. (2003), "Reinforced concrete T-Beams strengthened in shear with fiber reinforced polymer sheets", J. Compos. Constr., 7(4), 302-310. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(302).
  16. El-Maaddawy, T. and Chekfeh, Y. (2012), "Retrofitting of severely shear-damaged concrete T-Beams using externally bonded composites and mechanical end anchorage", J. Compos. Constr., 16(6), 693-704. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000299.
  17. El-Saikaly, G., Chaallal, O. and Benmokrane, B. (2017), "Comparison of anchorage systems for RC T-beams strengthened in shear with EB-CFRP".
  18. El-Saikaly, G., Godat, A. and Chaallal, O. (2015), "New anchorage technique for FRP shear-strengthened RC T-beams using CFRP rope", J. Compos. Constr., 19(4), 04014064. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000530.
  19. fib-TG 9.3 (2001), Externally bonded FRP Reinforcement for RC Structures.
  20. Foster, R.M., Brindley, M., Lees, J.M., Ibell, T.J., Morley, C.T., Darby, A.P. and Evernden, M.C. (2017), "Experimental investigation of reinforced concrete T-Beams strengthened in shear with externally bonded CFRP sheets", J. Compos. Constr., 21(2), 1-13. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000743.
  21. Galal, K. and Mofidi, A. (2010), "Shear strengthening of RC T-Beams using mechanically anchored unbonded dry carbon fiber sheets", J. Perform. Constr. Facil., 24(1), 31-39. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000067.
  22. Gamino, A.L., Sousa, J.L.A.O., Manzoli, O.L. and Bittencourt, T.N. (2010), "R/C Structures strengthened with CFRP Part II: analysis of shear models", Rev. IBRACON Estruturas e Mater., 3(1), 24-49. https://doi.org/10.1590/S1983-41952010000100003
  23. Ghazy, A. and Bassuoni, M.T. (2018), "Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts", Comput. Concrete, 21(6), 649-659. https://doi.org/10.12989/cac.2018.21.6.649.
  24. Grande, E., Imbimbo, M. and Rasulo, A. (2009), "Effect of transverse steel on the response of RC beams strengthened in shear by FRP: experimental study", J. Compos. Constr., 13(5), 405-414. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:5(405).
  25. Hu, B. and Wu, Y.F. (2018), "Effect of shear span-to-depth ratio on shear strength components of RC beams", Eng. Struct., 168, 770-783. https://doi.org/10.1016/j.engstruct.2018.05.017.
  26. Jalal, M. and Ramezanianpour, A.A. (2012), "Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks", Compos. Part B Eng., 43, 2990-3000. https://doi.org/10.1016/j.compositesb.2012.05.044.
  27. Jang, J.S. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE Trans. Syst. Man Cybern., 23(3), 665-685. https://doi.org/10.1109/21.256541.
  28. JSCE (2001), Recommendations for Upgrading of Concrete Structures with Use of Continuous Fiber Sheets.
  29. Kar, S. and Biswal, K.C. (2020a), "Shear strengthening of RC beams with basalt fiber reinforced polymer (BFRP) composites", Adv. Concrete Constr., 10(2), 93-104. http://dx.doi.org/10.12989/acc.2020.10.2.093.
  30. Kar, S. and Biswal, K.C. (2020b), "FRP shear contribution prediction for U-wrapped RC T-beams using a soft computing tool", Struct., 27, 1093-1104. https://doi.org/10.1016/j.istruc.2020.06.023.
  31. Kar, S., Pandit, A.R. and Biswal, K.C. (2020), "Prediction of FRP shear contribution for wrapped shear deficient RC beams using adaptive neuro-fuzzy inference system (ANFIS)", Struct., 23, 702-717. https://doi.org/10.1016/j.istruc.2019.10.022.
  32. Kim, Y., Ghannoum, W.M. and Jirsa, J.O. (2015), "Shear behavior of full-scale reinforced concrete T-beams strengthened with CFRP strips and anchors", Constr. Build. Mater., 94, 1-9. https://doi.org/10.1016/j.conbuildmat.2015.06.005.
  33. Kim, Y., Quinn, K., Ghannoum, W.M. and Jirsa, J.O. (2014), "Strengthening of reinforced concrete T-beams using anchored CFRP materials", ACI Struct. J., 111(5), 1027-1036. https://doi.org/10.14359/51686805
  34. Koutas, L. and Triantafillou, T.C. (2013), "Use of anchors in shear strengthening of reinforced concrete T-beams with FRP", J. Compos. Constr., 17(1), 101-107. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000316.
  35. Kumar, A. and Rupali, S. (2020), "Prediction of UCS and STS of kaolin clay stabilized with supplementary cementitious material using ANN and MLR", Adv. Comput. Des., 5(2), 195-207. https://doi.org/10.12989/acd.2020.5.2.195.
  36. Manos, G.C., Theofanous, M. and Katakalos, K. (2014), "Numerical simulation of the shear behaviour of reinforced concrete rectangular beam specimens with or without FRP-strip shear reinforcement", Adv. Eng. Softw., 67, 47-56. https://doi.org/10.1016/j.advengsoft.2013.08.001.
  37. Mazloom, M., Tajar, S.F. and Mahboubi, F. (2020), "Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks", Comput. Concrete, 25(5), 401-409. https://doi.org/10.12989/cac.2020.25.5.401.
  38. Mofidi, A., Chaallal, O., Benmokrane, B. and Neale, K. (2011), "Performance of end-anchorage systems for RC beams strengthened in shear with epoxy-bonded FRP", J. Compos. Constr., 16(3), 322-331. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000263.
  39. Mofidi, A., Thivierge, S., Chaallal, O. and Shao, Y. (2014), "Behavior of reinforced concrete beams strengthened in shear using L-shaped CFRP plates: experimental investigation", J. Compos. Constr., 18(2), 04013033. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000398.
  40. Naderpour, H. and Alavi, S.A. (2017), "A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of adaptive neuro-fuzzy inference system", Compos. Struct., 170, 215-227. https://doi.org/10.1016/j.compstruct.2017.03.028.
  41. Naderpour, H. and Mirrashid, M. (2020), "Proposed soft computing models for moment capacity prediction of reinforced concrete columns", Soft Comput., 24, 1-15. https://doi.org/10.1007/s00500-019-04634-8.
  42. Nadiri, A.A., Asadi, S., Babaizadeh, H. and Naderi, K. (2018), "Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers", Comput. Concrete, 21(1), 103-110. http://dx.doi.org/10.12989/cac.2018.21.1.103.
  43. Nguyen, M.S., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
  44. Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019), "Elastic modulus of ASR-affected concrete: an evaluation using Artificial Neural Network", Comput. Concrete, 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541.
  45. Oller, E., Pujol, M. and Mari, A. (2019), "Contribution of externally bonded FRP shear reinforcement to the shear strength of RC beams", Compos. Part B Eng., 164, 235-248. https://doi.org/10.1016/j.compositesb.2018.11.065.
  46. Ozden, S., Atalay, H.M., Akpinar, E., Erdogan, H. and Vulas, Y.Z. (2014), "Shear strengthening of reinforced concrete T-beams with fully or partially bonded fibre-reinforced polymer composites", Struct. Concrete, 15(2), 229-239. https://doi.org/10.1002/suco.201300031.
  47. Panda, K.C., Bhattacharyya, S.K. and Barai, S. V. (2013), "Effect of transverse steel on the performance of RC T-beams strengthened in shear zone with GFRP sheet", Constr. Build. Mater., 41, 79-90. https://doi.org/10.1016/j.conbuildmat.2012.11.098.
  48. Panigrahi, A.K., Biswal, K.C. and Barik, M.R. (2014), "Strengthening of shear deficient RC T-beams with externally bonded GFRP sheets", Constr. Build. Mater., 57, 81-91. https://doi.org/10.1016/j.conbuildmat.2014.01.076.
  49. Perera, R., Barchin, M., Arteaga, A. and Diego, A. De (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B Eng., 41, 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003.
  50. Saribiyik, A., Abodan, B. and Balci, M.T. (2020), "Experimental study on shear strengthening of RC beams with basalt FRP strips using different wrapping methods", Eng. Sci. Technol. an Int. J.. (in Press)
  51. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  52. Tanarslan, H.M. (2012), "Predicting the capacity of RC beams strengthened in shear with side-bonded FRP reinforcements using artificial neural networks", Compos. Interf., 18(7), 587-614. https://doi.org/10.1163/156855411X615075.
  53. TR 55 (2012), Design Guidance for Strengthening Concrete Structures using Fibre Composite Materials.
  54. Xue, X. and Zhou, H. (2020), "Neuro-fuzzy based approach for estimation of concrete compressive strength", Comput. Concrete, 21(6), 697-703. https://doi.org/10.12989/cac.2018.21.6.697.
  55. Xuesong, F. and Zhongfan, C. (2004), "Experimental research on shear strengthening of reinforced concrete beams with externally bonded CFRP sheets", Ind. Build., 34, 89-93.
  56. Yu, F., Guo, S., Wang, S. and Fang, Y. (2019), "Experimental study on high pre-cracked RC beams shear-strengthened with CFRP strips", Compos. Struct., 225, 111163. https://doi.org/10.1016/j.compstruct.2019.111163.
  57. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143. https://doi.org/10.12989/sem.2017.64.1.135.
  58. Zhu, E., Najem, R.M., Dinh-Cong, D., Shao, Z., Wakil, K., Ho, L.S., Alyousef, R., Alabduljabbar, H., Alaskar, A., Alrshoudi, F. and Mohamed, A.M. (2020), "Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms", Steel Compos. Struct., 34(4), 467-485. http://dx.doi.org/10.12989/scs.2020.34.4.467.