DOI QR코드

DOI QR Code

Effect of curing condition on mechanical properties of scarf-repaired composite laminates

  • Cheng, Xiaoquan (School of Aeronautic Science and Engineering, Beihang University) ;
  • Zhang, Jie (Institute of Telecommunication and Navigation Satellites, China academy of spacecraft technology) ;
  • Cheng, Yujia (School of Aeronautic Science and Engineering, Beihang University) ;
  • Guo, Xin (School of Aeronautic Science and Engineering, Beihang University) ;
  • Huang, Wenjun (AVIC China Helicopter Research and Development Institute)
  • 투고 : 2020.05.05
  • 심사 : 2020.11.05
  • 발행 : 2020.11.25

초록

Composite structures are generally pressurized at both sides when repaired by the scarf repair method. But single-face vacuum bag curing (SVC) may be used in some practical scarf repair of penetration damage due to the low accessibility of composite structures, which can decrease bonding quality and may reduce structural mechanical properties. In this paper, experimental investigations were conducted on tensile and compressive properties of scarf-repaired composite laminates using SVC and double-face vacuum bag curing (DVC) in four hygrothermal environments. Finite element models of composite scarf joints with voids were established to further explore the failure mechanism of scarf-repaired laminates. Results show that the curing condition hardly affects tensile and compressive properties of the repaired laminates though it significantly affects the bonding quality with adhesive inner voids. Failure loads of scarf joints almost keep unchanged with adhesive voids increasing.

키워드

참고문헌

  1. ASTM D2093-03 (Reapproved 2017), Standard practice for preparation of surfaces of plastics prior to adhesive bonding. West Conshohocken, PA: ASTM International.
  2. ASTM D3039/D3039M (2014), Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken, PA: ASTM International.
  3. ASTM D5229/D5229M (2014), Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. West Conshohocken, PA: ASTM International.
  4. ASTM D7137/D7137M (2017), Standard test method for compressive residual strength properties of damaged polymer matrix composite plates. West Conshohocken, PA: ASTM International.
  5. Caminero, M.A., Lopez-Pedrosa, M., Pinna, C. and Soutis, C. (2013a), "Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation", Compos. Part B: Eng., 53, 76-91. https://doi.org/10.1016/j.compositesb.2013.04.050.
  6. Caminero, M.A., Pavlopoupou, S., Lopez-Pedrosa, M., Nicolaisson, B.G., Pinna, C. and Soutis, C. (2012), "Using digital image correlation techniques for damage detection on adhesively bonded composite repairs", Adv. Compos. Lett., 21(2), 51-57. https://doi.org/10.1177/096369351202100203.
  7. Caminero, M.A., Pavlopoulou, S., Lopez-Pedrosa, M., Nicolaisson, B.G., Pinna C. and Soutis C. (2013b), "Analysis of adhesively bonded repairs in composites: Damage detection and prognosis", Compos. Struct., 95, 500-517. https://doi.org/10.1016/j.compositesb.2013.04.050.
  8. Caminero, M.A., Lopez-Pedrosa, M., Pinna, C. and Soutis, C. (2014), "Damage assessment of composite structures using digital image correlation", Appl. Compos. Mater., 21(1), 91-106. https://doi.org/10.1007/s10443-013-9352-5.
  9. Charalambides, M.N., Hardouin, R., Kinloch, A.J. and Matthews, F.L. (1998a), "Adhesively-bonded repairs to fibre-composite materials I. Experimental", Compos. Part A: Appl. Sci. Manufact., 29(11): 1371-1381. https://doi.org/10.1016/S1359-835X(98)00060-8.
  10. Charalambides, M.N., Kinloch, A.J. and Matthews F.L. (1998b), "Adhesively-bonded repairs to fibre-composite materials II. Finite element modelling", Compos. Part A: Appl. Sci. Manufact., 29(11), 1383-1396. https://doi.org/10.1016/S1359-835X(98)00061-X.
  11. Cheng, X.Q., Liu, S.F., Zhang, J.K., Guo, X. and Bao, J.W. (2018a), "Hygrothermal effects on mechanical behavior of scarf repaired carbon-epoxy laminates subject to axial compression loads: Experiment and numerical simulation", Polymer Compos., 39(3), 904-914. https://doi.org/10.1002/pc.24017.
  12. Cheng, X.Q., Yasir, B., Hu, R.W., Gao, Y.J. and Zhang, J.K. (2013), "Study of tensile failure mechanisms in scarf repaired CFRP laminates", Int. J. Adhesion Adhesives, 41, 177-185. https://doi.org/10.1016/j.ijadhadh.2012.10.015.
  13. Cheng, X.Q., Zhang, J., Bao, J.W., Zeng, B.Y., Cheng, Y.J. and Hua R.W. (2018b), "Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates", Int. J. Impact Eng., 111(1), 85-93. https://doi.org/10.1016/j.ijimpeng.2017.09.004.
  14. Cheng, X.Q., Zhang, J., Zhang, J.K., Liu, P., Cheng, Y.J. and Xu, Y.H. (2018c), "Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging", Steel Compos. Struct., 26(3), 265-272. https://doi.org/10.12989/scs.2018.26.3.265.
  15. Chong, H.M., Liu, S.L., Subramanian, A.S., Ng, S.P., Tay, S.W., Wang, S.Q. and Feiha, S. (2018), "Out-of-autoclave scarf repair of interlayer toughened carbon fibre composites using double vacuum debulking of patch", Compos. Part A: Appl. Sci. Manufact., 107, 224-234. https://doi.org/10.1016/j.compositesa.2018.01.001.
  16. Elaldi, F. and Elaldi, P. (2012), "Processing and environmental effects on composite repairs", Adv. Manufact. Processes, 27(3), 5. https://doi.org/10.1080/10426914.2011.577873.
  17. Heshmati, M., Haghani, R. and Al-Emrani, M. (2015), "Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: state of the art", Compos. Part B: Eng., 81, 259-275. https://doi.org/10.1016/j.compositesb.2015.07.014.
  18. Khashaba, U.A., Aljinaidi, A.A. and Hamed, M.A. (2015a), "Analysis of adhesively bonded CFRE composite scarf joints modified with MWCNTs", Compos. Part A: Appl. Sci. Manufact., 71, 59-71. https://doi.org/10.1016/j.compositesa.2015.01.004.
  19. Khashaba, U.A., Aljinaidi, A.A. and Hamed, M.A. (2015b), "Development of CFRE composite scarf adhesive joints with SiC and Al2O3 nanoparticle", Compos. Struct., 128, 415-427. https://doi.org/10.1016/j.compstruct.2015.03.071.
  20. Knight, G.A., Hou, T.H., Belcher, M.A., Palmieri, F.L., Wohl, C.J. and Connell, J.W. (2012), "Hygrothermal aging of composite single lap shear specimens comprised of AF-555M adhesive and T800H/3900-2 adherends", Int. J. Adhesion Adhesives, 39. 1-7. https://doi.org/10.1016/j.ijadhadh.2012.06.009.
  21. Liu, S.F., Cheng, X.Q., Zhang, Q., Bao, J.W. and Guo, X. (2016a), "An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates", Compos. Part B, 91, 431-440. https://doi.org/10.1016/j.compositesb.2016.01.051.
  22. Liu, S.F., Zhang, Q., Cheng, X.Q., Li, W.D. and Bao, J.W. (2016b), "Tensile performance of adhesively bonded carbon/epoxy composite scarf joints subject to hygrothermal environment", Hi-Tech Fiber Appl., 1, 34-39. https://doi.org/10.3969/j.issn.1007-9815.2016.01.005. (In Chinese).
  23. Mechab, B., Chama, M., Kaddouri, K. and Slimani, D. (2016), "Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch", Steel Compos. Struct., 20(6), 1173-1182. https://doi.org/10.12989/scs.2016.20.6.1173.
  24. Merzoug, M., Boulenouar, A. and Benguediab, M. (2017), "Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch", Steel Compos. Struct., 25(2), 209-216. https://doi.org/10.12989/scs.2017.25.2.209.
  25. Park, Y.B., Song, M.G., Kim, J.J., Kweon, J.H. and Choi, J.H. (2010), "Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions", Compos. Struct., 92(9), 2173-2180. https://doi.org/10.1016/j.compstruct.2009.09.009.
  26. Ray, B.C. and Rathore, D. (2015), "Environmental damage and degradation of FRP composites: a review report" Polymer Compos., 36(3), 410-423. https://doi.org/10.1002/pc.22967.
  27. Roy, R., Kweon, J.H. and Nam, Y. (2020), "Tensile strength of multi-angle composite laminate scarf joints with FEM", Proceedings of the 2nd International Conference on Advanced Composite Materials.
  28. Rider, A.N., Wang, C.H. and Chang, P. (2010), "Bonded repairs for carbon/BMI composite at high operating temperatures", Compos. Part A: Appl. Sci. Manufact., 41(7), 902-912. https://doi.org/10.1016/j.compositesa.2010.03.006.
  29. Tsai, Y.I., Bosze, E.J., Barjasteh, E. and Nutt, S.R. (2009), "Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites", Compos. Sci. Technol., 69(3-4), 432-437. https://doi.org/10.1016/j.compscitech.2008.11.012.
  30. Wang, C.H. and Gunnion, A.J. (2008), "On the design methodology of scarf repairs to composite laminates", Compos. Sci. Technol., 68(1), 35-46. https://doi.org/10.1016/j.compscitech.2007.05.045.
  31. Zhang, J, Cheng, X.Q., Zhang, J.K., Guo, X. and Huang, W.J. (2020a), "Effect of curing condition on bonding quality of scarf-repaired composite laminates", Chinese J. Aeronaut., 33(8), 2257-2267. https://doi.org/10.1016/j.cja.2019.08.016.
  32. Zhang, J., Cheng, X.Q., Hu, R.W. and Bao, J.W. (2018), "Tensile and compressive properties of scarf-repaired composite laminates", Polymer Mater. Sci. Eng., 34(1), 178-183. https://doi.org/10.16865/j.cnki.1000-7555.2018.01.032. (In Chinese)
  33. Zhang, J., Cheng, X.Q., Guo, X., Bao, J.W. and Huang, W.J. (2020b), "Effect of environment conditions on adhesive properties and material selection in composite bonded joints", J. Adhesion Adhesives, 96, 102302. https://doi.org/10.1016/j.ijadhadh.2018.12.001.