References
- Bian, Z. P., J. Hou, L. P. Chau, and M. T. Nadia(2015), IEEE Journal of Biomedical and Health Informatics, 19, pp. 430-439. https://doi.org/10.1109/JBHI.2014.2319372
- Cao, Z., T. Simon, S. E. Wei, and Y. Sheikh(2017), Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, arXiv:1611.08050.
- He, K., X. Zhang, S. Ren, and J. Sun(2015), Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
- Joo, M., M. Choo, Y. Baek, N. Kim, A. Choi, S. Im, J. Lee, H. Kim, and H. Lee(2018), Korea Coast Guard's Human Biological Materials Storage Project for Identifying Bodies Recovered from the Sea: A Model Suggestion, Journal of the Korean Society of Marine Environment & Safety, Vol. 24, No. 2, pp. 171-178. https://doi.org/10.7837/kosomes.2018.24.2.171
- KMST(2018), https://www.kmst.go.kr/.
- Li, Q., J. A. Stankovic, M. Hanson, A. Barth, and J. Lach (2009), Accurate, Fast Fall Detection Using Gyroscope and Accelerometer-Derived Posture Information, In Proceedings of the 6th International Workshop on Wearable and Implantable Body Sensor Networks, pp. 138-143.
- Lu, N., Y. Wu, L. Feng, and J. Song(2018), Deep Learning for Fall Detection: 3D-CNN Combined with LSTM on Video Kinematic Data, Vol. 23, No. 1, pp. 314-323. https://doi.org/10.1109/jbhi.2018.2808281
- Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg(2016), SSD: Single Shot MultiBox Detector, Proceedings of the European Conference on Computer Vision, pp. 21-37.
- Mastorakis, G. and M. Dimitrios(2014), Fall detection system using Kinect's infrared sensors, Journal of Real-Time Image Processing, Vol. 9, No. 4, pp. 635-646. https://doi.org/10.1007/s11554-012-0246-9
- Mundher, Z. A. and J. Zhong(2014), A Real_Time Fall Detection System in Elderly Care Using Mobile Robot and Kinect Sensor, International Journal of Materials, Mechanics and Manufacturing, Vol. 2, No. 2, pp. 133-138. https://doi.org/10.7763/IJMMM.2014.V2.115
- Park, K. M. and C. O. Bae(2019), A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network, Journal of the Korean Society of Marine Environment & Safety, Vol. 25, No. 4, pp. 476-481. https://doi.org/10.7837/kosomes.2019.25.4.476
- Redmon, J., S. Divvala, R. Girshick, and A. Farhadi(2016), You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788.
- Ren, S., K. He, R. Girshick, and J. Sun(2015), Faster R-CNN: Towards real-time object detection with region proposal networks, In Neural Information Processing Systems.
- Solbach, M. D. and J. K. Tsotsos(2017), Vision-based Fallen Person Detection for the Elderly, The IEEE International Conference on Computer Vision (ICCV) workshops, pp. 1433-1422.
- Szegedy, C., S. Ioffe, V. Vanhouche, and A. A. Alemi(2017), Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, Proceeding of the Thirty-First AAAI Conference on artificial Intelligence, pp. 4278-4284.
- Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016), Rethinking the Inception Architecture for Computer Vision, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818-2826.