References
- Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
- Alizada, A.N. and Sofiyev, A.H. (2011), "Modified Young's moduli of nano-materials taking into account the scale effects and vacancies", Meccanica, 46, 915-920. https://doi.org/10.1007/s11012-010-9349-1.
- Alizada, A.N., Sofiyev, A H. and Kuruoglu, N. (2012), "The stress analysis of the substrate coated by nanomaterials with vacancies subjected to the uniform extension load", Acta Mech., 223, 1371-1383. https://doi.org/10.1007/s00707-012-0649-5.
- Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, USA.
- Arefi, M. (2018), "Analysis of a doubly curved piezoelectric nano shell: Nonlocal electro-elastic bending solution", Eur. J. Mech. A Solids., 70, 226-237. https://doi.org/10.1016/j.euromechsol.2018.02.012.
- Chatterjee, K., Sarkar, S., Rao K.J. and Paria, S. (2014), "Core/shell nanoparticles in biomedical applications", Adv. Colloid Interf. Sci., 209, 8-39. https://doi.org/10.1016/j.cis.2013.12.008.
- Chen, J., Guo, J. and Pan, E. (2017), "Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect", J. Sound Vib., 400, 550-563. https://doi.org/10.1016/j.jsv.2017.04.001.
- Donnell, L.H. (1976), Beam, Plates and Shells, McGraw-Hill, New York, USA.
- Duan, W.H., Wang, Q. and Quek, S.T. (2010), "Applications of piezoelectric materials in structural health monitoring and repair: Selected research examples", Materials, 3, 5169-5194. https://doi.org/10.3390/ma3125169.
- Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019a), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., Int. J., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001.
- Ebrahimi, F. and Barati M.R. (2019b), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., Int. J., 7(1), 63-75. https://doi.org/10.12989/anr.2019.7.1.063.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene F. (2019c), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019d), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., Int. J., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
- Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019e), "Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment", Adv. Nano Res., Int. J., 7(5), 325-335. https://doi.org/10.12989/anr.2019.7.5.325.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York, USA.
- Farokhi, H., Paidoussis, M.P. and Misra, A. (2016), "A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators", J. Sound Vib., 378, 56-75. https://doi.org/10.1016/j.jsv.2016.05.008.
- Ghorbani, K., Mohammadi, K., Rajabpour, A. and Ghadiri, M. (2019), "Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin-Murdoch and nonlocal strain gradient theories", J. Phys. Chem. Solids, 129, 140-150. https://doi.org/10.1016/j.jpcs.2018.12.038.
- Ghorbanpour Arani, A., Kolahchi, R. and Hashemian, M. (2014), "Nonlocal surface piezoelasticity theory for dynamic stability of double-walled boron nitride nanotube conveying viscose fluid based on different theories", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 228(17), 3258-3280. https://doi.org/10.1177/0954406214527270.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surface", Arch. Rat. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Mater. Contin., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016.
- Hashemi Kachapi, S.H. (2020a), "Nonlinear vibration and stability analysis of piezo-harmo-electrostatic nanoresonator based on surface/interface and nonlocal strain gradient effects", J. Braz. Soc. Mech. Sci. Eng., 42(107), 107. https://doi.org/10.1007/s40430-020-2173-1.
- Hashemi Kachapi, S.H. (2020b), "Surface/interface approach in pull-in instability and nonlinear vibration analysis of fluid-conveying piezoelectric nanosensor", Mech. Based Des. Struct. Mach., 2020, 1-26. https://doi.org/10.1080/15397734.2020.1725566.
- Hashemi Kachapi, S.H., Dardel, M., Mohamadi Daniali, H. and Fathi, A. (2019a), "Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshel", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 233(15), 5264-5279. https://doi.org/10.1177/0954406219845019.
- Hashemi Kachapi, S.H., Dardel, M., Mohamadi Daniali, H. and Fathi, A. (2019b), "Pull-in instability and nonlinear vibration analysis of electrostatically piezoelectric nanoresonator with surface/interface effects", Thin-Wall. Struct., 143, 106210. https://doi.org/10.1016/j.tws.2019.106210.
- Hashemi Kachapi, S.H., Dardel, M., Mohamadi Daniali, H. and Fathi, A. (2019c), "Nonlinear dynamics and stability analysis of piezo-visco medium nanoshell resonator with electrostatic and harmonic actuation", Appl. Math. Model., 75, 279-309. https://doi.org/10.1016/j.apm.2019.05.035.
- Hashemi Kachapi, S.H., Dardel, M., Mohamadi Daniali, H. and Fathi, A. (2019d), "Nonlinear vibration and stability analysis of double-walled piezoelectric nanoresonator with nonlinear van der Waals and electrostatic excitation", J. Vib. Control, 6(9-10), 680-700. https://doi.org/10.1177/1077546319889858.
- Hashemi Kachapi, S.H., Mohamadi Daniali, H., Dardel, M. and Fathi, A. (2020), "The effects of nonlocal and surface/interface parameters on nonlinear vibrations of piezoelectric nanoresonator", J. Intell. Mater. Syst. Struct., 31(6), 818-842. https://doi.org/10.1177/1045389X19898756.
- Kosaka, P.M., Pini, V., Ruz, J.J., Da Silva, R.A., Gonzalez, M.U., Ramos, D., Calleja, M. and Tamayo, J. (2014), "Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensors", Nat. Nanotechnol., 9(12), 1047-1053. https://doi.org/10.1038/nnano.2014.250.
- Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.
- Li, L., Hu, Y. and Li, X. (2016), "Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011.
- Lim C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Managheb, S.A.M., Ziaei-Rad, S. and Tikani, R. (2018), "Energy harvesting from vibration of Timoshenko nanobeam under base excitation considering flexoelectric and elastic strain gradient effects", J. Sound Vib., 421, 166-189. https://doi.org/10.1016/j.jsv.2018.01.059.
- Manbachi, A. and Cobbold, R.S.C. (2011), "Development and application of piezoelectric materials for ultrasound generation and detection", Ultrasound, 11, 187-196. https://doi.org/10.1258/ult.2011.011027.
- Manevitch, A.I. and Manevitch, L.I. (2005), The Mechanics of Nonlinear Systems with Internal Resonance, Imperial College Press, London, UK.
- Melancon, M.P., Lu, W., Zhong, M., Zhou, M., Liang, G., Elliott, A.M., Hazle, J.D., Myers, J.N., Li, C. and Stafford, R.J. (2011), "Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer", Biomaterials, 32(30), 7600-7608. https://doi.org/10.1016/j.biomaterials.2011.06.039.
- Mousavi, S.M., Hashemi, S.A., Zarei, M., Amani, A.M. and Babapoor, A. (2018), "Nanosensors for chemical and biological and medical applications", Med. Chem., 8(8), 205-217. https://doi.org/10.4172/2161-0444.1000515.
- Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Contin., 59, 31-55. https://doi.org/10.32604/cmc.2019.04567.
- Rahmanian, S. and Hosseini-Hashemi, S. (2019), "Size-dependent resonant response of a double-layered viscoelastic nanoresonator under electrostatic and piezoelectric actuations incorporating surface effects and Casimir regime", Int. J. Non Linear Mech., 109, 118-131. https://doi.org/10.1016/j.ijnonlinmec.2018.12.003.
- Rupitsch, S.J. (2019), Piezoelectric Sensors and Actuators: Fundamentals and Applications, New York, Springer.
- Sabzikar Boroujerdy, M. and Eslami, M.R. (2014), "Axisymmetric snap-through behavior of piezo-FGM shallow clamped spherical shells under thermo-electro-mechanical loading", Int. J. Press. Vessel Pip., 120-121, 19-26. https://doi.org/10.1016/j.ijpvp.2014.03.008.
- Samaniego, E., Anitescud, C., Goswami, S., Nguyen-Thanh, V.M., Guoe, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Method Appl. M, 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Sofiyev, A.H., Tornabene, F., Dimitri, R. and Kuruoglu, N. (2020a), "Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading", Nanomaterials, 10(3), 1-19. https://doi.org/10.3390/nano10030419.
- Sofiyev, A.H., Mammadov, Z. Dimitri, R. and Tornabene, F. (2020b), "Vibration analysis of shear deformable CNT-based FG conical shells resting on elastic foundations", Math. Method Appl. Sci., 2020, 1-10. https://doi.org/10.1002/mma.6674.
- Sun, J., Wang, Z., Zhou, Z., Xu, X.G. and Lim, C.W. (2018), "Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model", Appl. Math. Model., 59, 341-356. https://doi.org/10.1016/j.apm.2018.01.032.
- Tzou, H. (2019), Piezoelectric Shells: Sensing, Energy Harvesting and Distributed Control, Springer, New York, USA.
- Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005.
- Zhang, H., Wang, C.M. and Challamel, N. (2018), "Modelling vibrating nano-strings by lattice, finite difference and Eringen's nonlocal models", J. Sound Vib., 425, 41-52. https://doi.org/10.1016/j.jsv.2018.04.001.
- Zhu, C.S., Fang, X.Q., Liu, J.X. and Li, H.Y. (2017), "Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells", Eur. J. Mech. A Solids, 66, 423-432. https://doi.org/10.1016/j.euromechsol.2017.08.001.
- Zhu, C., Fang, X. and Liu, J. (2020), "A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells", Appl. Math. Model., 77, 137-168. https://doi.org/10.1016/j.apm.2019.07.027.