DOI QR코드

DOI QR Code

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • 투고 : 2019.04.05
  • 심사 : 2020.09.29
  • 발행 : 2020.11.25

초록

An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

키워드

참고문헌

  1. Alipour, M. (2016), "Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation", Arch. Civ. Mech. Eng., 16(4), 678-694. https://doi.org/10.1016/j.acme.2016.04.015.
  2. Alipour, M. and Shariyat, M. (2017), "Analytical layerwise free vibration analysis of circular/annular composite sandwich plates with auxetic cores", Int. J. Mech. Mater. Des., 13(1), 125-157. https://doi.org/10.1007/s10999-015-9321-2.
  3. Ansari, R., Torabi, J. and Shojaei, M.F. (2017), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B Eng., 109, 197-213. https://doi.org/10.1016/j.compositesb.2016.10.050.
  4. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7.
  5. Burman, M. and Zenkert, D. (2000), "Fatigue of undamaged and damaged honeycomb sandwich beams", J. Sandw. Struct. Mater., 2(1), 50-74. https://doi.org/10.1177/109963620000200103.
  6. Ebrahimi, F. and Rastgoo, A. (2008), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044.
  7. Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069.
  8. Ebrahimi, F., Rastgoo, A. and Atai, A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech. A Solids, 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008.
  9. Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019), "Surface effects on scale-dependente vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(9), 77-88. http://dx.doi.org/10.12989/anr.2019.7.2.077.
  10. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  11. Ferreira, A., Fasshauer, G., Batra, R. and Rodrigues, J. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct., 86(4), 328-343. https://doi.org/10.1016/j.compstruct.2008.07.025.
  12. Gdoutos, E., Daniel, I.M. and Wang, K. (2002), "Indentation failure in composite sandwich structures", Exp. Mech., 42(4), 426-431. https://doi.org/10.1007/BF02412148.
  13. George, A., Shah, P.A. and Shrivastav, P.S. (2019), "Natural biodegradable polymers-based nano-formulations for drug delivery: A review", Int. J. Pharm., 561, 244-264. https://doi.org/10.1016/j.ijpharm.2019.03.011.
  14. Ghorbanpour-Arani, A., Mosayyebi, M., Kolahdouzan, F., Kolahchi, R. and Jamali, M. (2017), "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers", Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 231(13), 2464-2478. https://doi.org/10.1177/0954410016667150.
  15. Ghorbanpour-Arani, A., Kolahdouzan, F. and Abdollahian, M. (2018), "Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory", Appl. Math. Mech., 39(4), 529-546. https://doi.org/10.1007/s10483-018-2319-8.
  16. Guo, Y., Jiang, Y. and Huang, B. (2019), "Independent coordinate coupling method for vibration analysis of a functionally graded carbon nanotube-reinforced plate with central hole", Adv. Mech. Eng., 11(8), 1687814019872924. https://doi.org/10.1177/1687814019872924.
  17. Hajmohammad, M.H., Sharif Zarei, M., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.
  18. Herrmann, A.S., Zahlen, P.C. and Zuardy, I. (2005), Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Springer, Aalborg, Denmark.
  19. Hosseini Hashemi, S.H., Es'haghi, M. and Karimi, M. (2010), "Closed-form vibration analysis of thick annular functionally graded plates with integrated piezoelectric layers", Int. J. Mech. Sci., 52(3), 410-428. https://doi.org/10.1016/j.ijmecsci.2009.10.016.
  20. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 2018, 1-20. https://doi.org/10.1007/s00366-018-0664-9.
  21. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
  22. Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E Low Dimens. Syst. Nanostruct., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002.
  23. Kiani, Y. (2017), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin-Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011.
  24. Lei, Z., Liew, K.M. and Yu, J. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
  25. Malekzadeh, P. and Ouji, A. (2008), "Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method", Int. J. Press. Vessel. Piping, 85(11), 789-797. https://doi.org/10.1016/j.ijpvp.2008.07.001.
  26. Mehar, K. and Kumar Panda, S. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  27. Mehar, K., Kumar Panda, S. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  28. Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., Int. J., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  29. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  30. Panda, S. and Singh, B. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
  31. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  32. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  33. Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781. https://doi.org/10.1007/s00419-012-0716-3.
  34. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  35. Van Vuure, A.W., Ivens, J. and Verpoest, I. (2000), "Mechanical properties of composite panels based on woven sandwich-fabric preforms", Compos. Part A Appl. Sci. Manuf., 31(7), 671-680. https://doi.org/10.1016/S1359-835X(00)00017-8.
  36. Vinson, J.R. (1999), The Behavior of Sandwich Structures of Isotropic and Composite Materials, CRC Press, Pennsylvania, USA.
  37. Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025.
  38. Yue, X., He, W., Meng, T. and Song, Y. (2019), "Vibration control and stability analysis of a nanobeam with boundary prescribed performance", Int. J. Control, 2019, 1-10. https://doi.org/10.1080/00207179.2019.1629026.
  39. Zhang, L., Song, Z. and Liew, K. (2015), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011.