DOI QR코드

DOI QR Code

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Received : 2020.02.08
  • Accepted : 2020.08.12
  • Published : 2020.11.25

Abstract

The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

Keywords

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. http://dx.doi.org/10.12989/cac.2019.24.4.347
  3. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
  4. Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004.
  5. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. http://dx.doi.org/10.12989/sem.2019.71.5.485.
  6. Aragh, B.S. and Yas, M.H. (2011), "Effect of continuously grading fiber orientation face sheets on vibration of sandwich panels with FGM core", Int. J. Mech. Sci., 53(8), 628-638. https://doi.org/10.1016/j.ijmecsci.2011.05.009.
  7. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. http://dx.doi.org/10.12989/cac.2019.24.6.579.
  8. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., Int, J., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  9. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo- mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  10. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  11. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on winkler-pasternak elastic foundations", Steel Compos. Struct., Int, J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
  12. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int, J., 31(5), 503-516. http://dx.doi.org/10.12989/scs.2019.31.5.503.
  13. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int, J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  14. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  15. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. http://dx.doi.org/10.12989/cac.2020.25.2.155.
  16. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. http://dx.doi.org/10.12989/sss.2020.25.2.197.
  17. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. http://dx.doi.org/10.12989/anr.2019.7.3.191.
  18. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. http://dx.doi.org/10.12989/sem.2019.71.2.185.
  19. Wu, C.P. and Liu, W.L. (2014), "3D buckling analysis of FGM sandwich plates under bi-axial compressive loads", Smart Struct. Syst., Int. J., 13(1), 111-135. https://doi.org/10.12989/sss.2014.13.1.111.
  20. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Singapore.
  21. Dash, S., Mehar, K., Sharma, N,. Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., Int. J., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  22. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. http://dx.doi.org/10.12989/cac.2019.24.4.369
  23. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  24. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
  25. Fouad, B., Bouiadjra, M.B., Bouremana, M. and Tounsi, A. (2018), "Hygro-thermo-mechanical bending analysis of FGM plates using a new HSDT", Smart Struct. Syst., Int. J., 21(1), 75-97. https://doi.org/10.12989/sss.2018.21.1.075.
  26. Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108(109), 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.
  27. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., Int. J., 34(2), 227-239. https://doi.org/10.12989/scs.2020.34.2.227.
  28. Hellal, H. and Bourada, M. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater., 2019, 1099636219845841. http://dx.doi.org/10.1177/1099636219845841.
  29. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. http://dx.doi.org/10.12989/cac.2020.25.1.037.
  30. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56, 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X.
  31. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/ different boundary conditions", Eng. Comput., 35(4), 1297-1316. http://dx.doi.org/10.1007/s00366-018-0664-9.
  32. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On prestressed functionally graded anisotropic nanoshell in magnetic", J. Braz. Soc. Mech. Sci. Eng., 41, 1-17. https://doi.org/10.1007/s40430-019-1996-0.
  33. Karami, B., Janghorban, M. and Tounsi, A. (2020), "Novel study on functionally graded anisotropic doubly curved nanoshells", Eur. Phys. J. Plus, 103, 135. http://dx.doi.org/10.1140/epjp/s13360-019-00079-y.
  34. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
  35. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15, 399-423. https://doi.org/10.12989/scs.2013.15.4.399.
  36. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 2019, 1-15. https://doi.org/10.1007/s00366-019-00732-1.
  37. Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling and postbuckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation", Arch. Appl. Mech., 82, 891-905. https://doi.org/10.1007/s00419-011-0599-8.
  38. Kim, J., Żur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  39. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  40. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Sizedependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., Int. J., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001.
  41. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  42. Liu, M., Cheng, Y. and Liu, J. (2015), "High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core", Compos. Part B, 72, 97-107. https://doi.org/10.1016/j.compositesb.2014.11.037.
  43. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21, 1906-1929. https://doi.org/10.1177/1099636217727577.
  44. Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.
  45. Mehar, K. and Panda, S.K. (2017), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. http://dx.doi.org/10.1002/pc.24266.
  46. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S. (2017), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. http://dx.doi.org/10.1177/1099636217698443.
  47. Menasria, A., Bouhada, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  48. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  49. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
  50. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
  51. Ozdemir, M., Sadamoto, S., Tanaka, S., Okazawa, S., Yu, T.T. and Bui, T.Q. (2018), "Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces", Acta Mech., 229, 4995-5012. https://doi.org/10.1007/s00707-018-2275-3.
  52. Panda, S.K. and Singh, B.N. (2013), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29, 47-57. https://doi.org/10.1016/j.ast.2013.01.007.
  53. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., Int. J., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  54. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  55. Shen, H.S. and Li, S.R. (2008), "Postbuckling of sandwich plates with FGM face sheets and temperature dependent properties", Compos. Part B, 39(2), 332-344. https://doi.org/10.1016/j.compositesb.2007.01.004.
  56. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  57. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.compstruct.2015.03.010.
  58. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. http://dx.doi.org/10.12989/sem.2019.69.6.637.
  59. Topal, U. (2012), "Thermal buckling load optimization of laminated plates with different intermediate line supports", Steel Compos. Struct., Int. J., 13(3), 207-223. https://doi.org/10.12989/scs.2012.13.3.207.
  60. Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., Int. J., 14(3), 283-293. https://doi.org/10.12989/scs.2013.14.3.283.
  61. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  62. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., Int. J., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547.
  63. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., Int. J., 34(4), 511-524. http://dx.doi.org/10.12989/scs.2020.34.4.511.
  64. Van Tung, H. (2015), "Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties", Compos. Struct., 131, 1028-1039. https://doi.org/10.1016/j.compstruct.2015.06.043.
  65. Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev., 54, 201-214. https://doi.org/10.1115/1.3097295
  66. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  67. Wang, X.Z. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93, 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014.
  68. Wang, Z.X. and Shen, H.S. (2013), "Nonlinear dynamic response of sandwich plates with FGM face sheets resting on elastic foundations in thermal environments", Ocean Eng., 57, 99-110. https://doi.org/10.1016/j.oceaneng.2012.09.004.
  69. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
  70. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2018), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  71. Zarga, D., Tounsi, A., Anis, B., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. http://dx.doi.org/10.12989/scs.2019.32.3.389.
  72. Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-deflection and stresses", Int. J. Solids Struct., 42(18), 5224-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  73. Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-buckling and free vibration", Int. J. Solids Struct., 42(18), 5224-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  74. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93102. https://doi.org/10.1016/j.compstruct.2010.06.012.
  75. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mech., 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6.
  76. Zohra, A., Hadji, T.L., Daouadji, H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.

Cited by

  1. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073