DOI QR코드

DOI QR Code

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Teng, Q. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Duan, Y.F. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Yun, C.B. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Dong, S.L. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Lou, W.J. (College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2020.04.13
  • Accepted : 2020.05.28
  • Published : 2020.11.25

Abstract

A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

Keywords

Acknowledgement

This research work was supported by the National Key R&D Program of China (2018YFE0125400, 2017YFC0806100, and 2019YFE0112600) and the National Natural Science Foundation of China (U1709216, 51578419, 51522811, 51478429, and 90915008).

References

  1. Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802.
  2. Bagheri, M.R., Mosayebi, M., Mandian, A. and Keshavarzi, A. (2018), "Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGAII for ride comfort and ride safety", Smart Struct. Syst., Int. J., 22(4), 469-479. https://doi.org/10.12989/sss.2018.22.4.469.
  3. Boggs, P.T. and Tolle, J.W. (2000), "Sequential quadratic programming for large-scale nonlinear optimization", J. Comput. Appl. Math., 124(1-2), 123-137. https://doi.org/10.1016/S0377-0427(00)00429-5.
  4. Cardenas, R.A., Viramontes, F.J.C., Gonzalez, A.D. and Ruiz, G.H. (2008), "Analysis for the optimal location of cable damping systems on stayed bridges", Nonlinear Dyn., 52(4), 347-359. https://doi.org/10.1007/s11071-007-9283-5.
  5. Chen, X., Li, A.Q., Zhang, Z.Q., Zhou, G.D. and Cao, L.L. (2017), "Optimization design of MTMD for vibration comfort control of long-span roof structure", J. Vib. Eng., 2017(5), 827-836. https://doi.org/10.16385/j.cnki.issn.1004-4523.2017.05.016.
  6. Chung, T.T., Cho, S., Yun, C.B. and Sohn, H. (2012), "Finite element model updating of Canton Tower using regularization technique", Smart Struct. Syst., Int. J., 10(4-5), 459-470. https://doi.org/10.12989/sss.2012.10.4_5.459.
  7. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
  8. Debnath, N., Dutta, A. and Deb, S.K. (2016), "Multi-modal passive-vibration control of bridges under general loadingcondition", Procedia Eng., 144, 264-273. https://doi.org/10.1016/j.proeng.2016.05.132.
  9. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using magnetorheological dampers", J. Intell. Mater. Syst. Struct., 17(4), 321-325. https://doi.org/10.1142/9789812702197_0121.
  10. Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer, B.F., Ko, J.M. and Dong, S.H. (2019a), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537.
  11. Duan, Y.F., Wang, X.C., Dong, S.H. and Teng, Q. (2019b), "Technical report on wind-induced vibration analysis and vibration control for the Shijiazhuang international exhibition center", College of Civil Engineering and Architecture, Zhejiang University, Zhejiang, China.
  12. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.
  13. Elias, S., Matsagar, V. and Datta, T.K. (2017), "Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations", J. Earthq. Eng., 23(7), 1137-1172. https://doi.org/10.1080/13632469.2017.1351407.
  14. Etedali, S. and Rakhshani, H. (2018), "Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations", Alex. Eng. J., 57(4), 3205-3218. https://doi.org/10.1016/j.aej.2018.01.009.
  15. Frans, R. and Arfiadi, Y. (2015), "Designing optimum locations and properties of MTMD systems", Civ. Eng. Innov. Sustain., 125, 892-898. https://doi.org/10.1016/j.proeng.2015.11.079.
  16. Fujino, Y. (2002), "Vibration, control and monitoring of long-span bridges - recent research, developments and practice in Japan", J. Constr. Steel Res., 58(1), 71-97. https://doi.org/10.1016/S0143-974X(01)00049-9.
  17. Hansen, P.C. and Oleary, D.P. (1993), "The use of the L-curve in the regularization of discrete ill-posed problems", Siam J. Sci. Comput., 14(6), 1487-1503. https://doi.org/10.1137/0914086.
  18. Holland, J. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, USA.
  19. Hussan, M., Rahman, M.S., Sharmin, F., Kim, D. and Do, J. (2018), "Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation", Ocean Eng., 160, 449-460. https://doi.org/10.1016/j.oceaneng.2018.04.041.
  20. Izui, K., Yamada, T., Nishiwaki, S. and Tanaka, K. (2015), "Multiobjective optimization using an aggregative gradientbased method", Struct. Multidiscipl. Optim., 51(1), 173-182. https://doi.org/10.1007/s00158-014-1125-8.
  21. Jin, Z.L., Yang, Y.W. and Soh, C.K. (2010), "Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure vibration control", Smart Struct. Syst., Int. J., 6(7), 767-792. https://doi.org/10.12989/sss.2010.6.7.767.
  22. Jin, S.S., Cho, S., Jung, H.J., Lee, J.J. and Yun, C.B. (2014), "A new multi-objective approach to finite element model updating", J. Sound Vib., 333(11), 2323-2338. https://doi.org/10.1016/j.jsv.2014.01.015.
  23. Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2015), "Optimum design of steel frame structures considering construction cost and seismic damage", Smart Struct. Syst., Int. J., 16(1), 1-26. https://doi.org/10.12989/sss.2015.16.1.001.
  24. Lavan, O. (2017), "Multi-objective optimal design of tuned mass dampers", Struct. Control Health Monit., 24(11), e2008. https://doi.org/10.1002/stc.2008.
  25. Lu, L., Duan, Y.F., Spencer, B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monit., 24(10), e1986. https://doi.org/10.1002/stc.1986.
  26. Marti, R. (2003), Handbook of Metaheuristics, Springer, Boston, USA.
  27. MathWorks (2020), Optimization Toolbox User's Guide, Matlab, USA.
  28. Miguel, L.F.F., Lopez, R.H., Torii, A.J., Miguel, L.F.F. and Beck, A.T. (2016), "Robust design optimization of TMDs in vehiclebridge coupled vibration problems", Eng. Struct., 126, 703-711. https://doi.org/10.1016/j.engstruct.2016.08.033.
  29. Nezami, M. and Gholami, B. (2016), "Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method", Smart Mater. Struct., 25(3), 035043. https://doi.org/10.1088/0964-1726/25/3/035043.
  30. Niu, H.W., Chen, Z.Q., Hua, X.G. and Zhang, W. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727.
  31. Ok, S.Y., Song, J. and Park, K.S. (2008), "Optimal performance design of bi-tuned mass damper systems using multi-objective optimization", KSCE J. Civ. Eng., 12(5), 313-322. https://doi.org/10.1007/s12205-008-0313-8.
  32. Pourzeynali, S., Salimi, S. and Eimani Kalesar, H. (2013), "Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms", Sci. Iran., 20(2), 207-221. https://doi.org/10.1016/j.scient.2012.11.015.
  33. Repetto, M.P. and Solari, G. (2001), "Dynamic alongwind fatigue of slender vertical structures", Eng. Struct., 23(12), 1622-1633. https://doi.org/10.1016/S0141-0296(01)00021-9.
  34. Siinivas, N. and Deb, K. (1994), "Multiobjective optimization using nondominated sorting in genetic algorithms", Evol. Comput., 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221.
  35. Tao, T.Y., Wang, H., Yao, C.Y. and He, X.H. (2017), "Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD", Appl. Sci. Basel, 7(4), 395. https://doi.org/10.3390/app7040395.
  36. Tributsch, A. and Adam, C. (2012), "Evaluation and analytical approximation of tuned mass damper performance in an earthquake environment", Smart Struct. Syst., Int. J., 10(2), 155-179. https://doi.org/10.12989/sss.2012.10.2.155.
  37. Vellar, L.S., Ontiveros-Perez, S.P., Miguel, L.F.F. and Miguel, L.F.F. (2019), "Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation", Shock Vib., 2019, 9273714. https://doi.org/10.1155/2019/9273714.
  38. Wang, C. and Shi, W.X. (2019), "Optimal design and application of a multiple tuned mass damper system for an in-service footbridge", Sustainability, 11(10), 2801. https://doi.org/10.3390/su11102801.
  39. Wang, D.Y., Wu, C.Q., Zhang, Y.S. and Li, S.W. (2019a), "Study on vertical vibration control of long-span steel footbridge with tuned mass dampers under pedestrian excitation", J. Constr. Steel Res., 154, 84-98. https://doi.org/10.1016/j.jcsr.2018.11.021.
  40. Wang, Z.H., Gao, H., Xu, Y.W., Chen, Z.Q. and Wang, H. (2019b), "Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations", Smart Struct. Syst., Int. J., 24(1), 83-94. https://doi.org/10.12989/sss.2019.24.1.083.
  41. Wang, L.K., Shi, W.X., Zhou, Y. and Zhang, Q.W. (2020), "Semiactive eddy current pendulum tuned mass damper with variable frequency and damping", Smart Struct. Syst., Int. J., 25(1), 65-80. http://dx.doi.org/10.12989/sss.2020.25.1.065
  42. Warnitchai, P. and Hoang, N. (2006), "Optimal placement and tuning of multiple tuned mass dampers for suppressing multimode structural response", Smart Struct. Syst., Int. J., 2(1), 1-24. https://doi.org/10.12989/sss.2006.2.1.001.
  43. Xu, K.M. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng. Struct. Dyn., 21(12), 1059-1070. https://doi.org/10.1002/eqe.4290211203.
  44. Zahrai, S.M. and Froozanfar, M. (2019), "Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge", Smart Struct. Syst., Int. J., 23(5), 449-466. https://doi.org/10.12989/sss.2019.23.5.449.
  45. Zheng, H., Pau, G.S.H. and Wang, Y.Y. (2006), "A comparative study on optimization of constrained layer damping treatment for structural vibration control", Thin-Wall. Struct., 44(8), 886-896. https://doi.org/10.1016/j.tws.2006.08.005.
  46. Zhou, H.J., Yang, X., Pang, Y.R., Zhou, R., Sun, L.M. and Xing, F. (2019), "Damping and frequency of twin-cables with a crosslink and a viscous damper", Smart Struct. Syst., Int. J., 23(6), 669-682. https://doi.org/10.12989/sss.2019.23.6.669.
  47. Zi, B., Zhu, Z.C. and Du, J.L. (2011), "Analysis and control of the cable-supporting system including actuator dynamics", Control Eng. Pract., 19(5), 491-501. https://doi.org/10.1016/j.conengprac.2011.02.001.