Acknowledgement
All procedures were approved by the ethics committee of Seoul National University (IRB No. 1909/002-010). The participants provided written informed consent to participate in this study. This research was supported by the National Research Foundation (700-20190019 and NRF-2020R1C1C1006414).
References
- Katakam A. Data check: a historical breakdown of when teams score at the Fifa World Cup. 2018 2018.07.05 2019.04.14]; Available from: https://scroll.in/field/884136/data-check-a-historicalbreakdown-of-when-teams-score-at-the-fifa-world-cup.
- DE Oliveira MC, Orbetelli R, DE Barros Neto TL. Call accuracy and distance from the play: a study with Brazilian soccer referees. Int J Exerc Sci. 2011;4:30-8.
- Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F, Bloch J, Messerer M, Levivier M, Meuli R, Magistretti PJ, Oddo M. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40:412-21. https://doi.org/10.1007/s00134-013-3203-6
- Huijgen BC, Leemhuis S, Kok NM, Verburgh L, Oosterlaan J, Elferink-Gemser MT, Visscher C. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PLoS One. 2015;10:e0144580. https://doi.org/10.1371/journal.pone.0144580
- Sakamoto S, Takeuchi H, Ihara N, Ligao B, Suzukawa K. Possible requirement of executive functions for high performance in soccer. PLoS One. 2018;13:e0201871. https://doi.org/10.1371/journal.pone.0201871
- Vestberg T, Gustafson R, Maurex L, Ingvar M, Petrovic P. Executive functions predict the success of top-soccer players. PLoS One. 2012;7:e34731. https://doi.org/10.1371/journal.pone.0034731
- Hashimoto T, Tsukamoto H, Takenaka S, Olesen ND, Petersen LG, Sorensen H, Nielsen HB, Secher NH, Ogoh S. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 2018;32:1417-27. https://doi.org/10.1096/fj.201700381rr
- Scarpina F, Tagini S. The stroop color and word test. Front Psychol. 2017;8:557. https://doi.org/10.3389/fpsyg.2017.00557
- Abd-Elfattah HM, Abdelazeim FH, Elshennawy S. Physical and cognitive consequences of fatigue: a review. J Adv Res. 2015;6:351-8. https://doi.org/10.1016/j.jare.2015.01.011
- Zajac A, Chalimoniuk M, Maszczyk A, Golas A, Lngfort J. Central and peripheral fatigue during resistance exercise - a critical review. J Hum Kinet. 2015;49:159-69. https://doi.org/10.1515/hukin-2015-0118
- Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology. 2013;80:409-16. https://doi.org/10.1212/WNL.0b013e31827f07be
- Pattyn N, Van Cutsem J, Dessy E, Mairesse O. Bridging exercise science, cognitive psychology, and medical practice: is "cognitive fatigue" a remake of "the emperor's new clothes"? Front Psychol. 2018;9:1246. https://doi.org/10.3389/fpsyg.2018.01246
- Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27:757-85. https://doi.org/10.1016/j.cmet.2018.03.008
- Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724-38. https://doi.org/10.1016/j.cmet.2011.08.016
- Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24:1687-94. https://doi.org/10.1111/j.1460-9568.2006.05056.x
- van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29:1121-9. https://doi.org/10.1038/jcbfm.2009.35
- Smith KJ, Ainslie PN. Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol. 2017;102:1356-71. https://doi.org/10.1113/EP086249
- Kemppainen J, Aalto S, Fujimoto T, Kalliokoski KK, Langsjo J, Oikonen V, Rinne J, Nuutila P, Knuuti J. High intensity exercise decreases global brain glucose uptake in humans. J Physiol. 2005;568:323-32. https://doi.org/10.1113/jphysiol.2005.091355
- Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, Isaka T, Hashimoto T. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol Behav. 2016;155:224-30. https://doi.org/10.1016/j.physbeh.2015.12.021
- Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, Isaka T, Ogoh S, Hashimoto T. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol Behav. 2016;160:26-34. https://doi.org/10.1016/j.physbeh.2016.03.029
- Stolen T, Chamari K, Castagna C, Wisloff U. Wisloff. Physiology of soccer: an update. Sports Med. 2005;35:501-36. https://doi.org/10.2165/00007256-200535060-00004
- Russell M, West DJ, Harper LD, Cook CJ, Kilduff LP. Halftime strategies to enhance second-half performance in teamsports players: a review and recommendations. Sports Med. 2015;45:353-64. https://doi.org/10.1007/s40279-014-0297-0
- Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72:223-61. https://doi.org/10.1016/j.pneurobio.2004.03.005
- McMorris T. Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: lessons from animal studies. Physiol Behav. 2016;165:291-9. https://doi.org/10.1016/j.physbeh.2016.08.011
- Grego F, Vallier JM, Collardeau M, Bermon S, Ferrari P, Candito M, Bayer P, Magnie MN, Brisswalter J. Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists. Neurosci Lett. 2004;364:76-80. https://doi.org/10.1016/j.neulet.2004.03.085
- Shields GS, Bonner JC, Moons WG. Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting. Psychoneuroendocrinology. 2015;58:91-103. https://doi.org/10.1016/j.psyneuen.2015.04.017
- Byun K, Hyodo K, Suwabe K, Ochi G, Sakairi Y, Kato M, Dan I, Soya H. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. NeuroImage. 2014;98:336-45. https://doi.org/10.1016/j.neuroimage.2014.04.067
- Holloway R, Zhou Z, Harvey HB, Levasseur JE, Rice AC, Sun D, Hamm RJ, Bullock MR. Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir (Wien). 2007;149:919-27. https://doi.org/10.1007/s00701-007-1241-y
- Warburton DE, Jamnik V, Bredin SS, Shephard RJ, Gledhill N. The 2019 physical activity readiness questionnaire for everyone (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+). The Health & Fitness Journal of Canada. 2018;11:80-3.
- Bisri T, Utomo BA, Fuadi I. Exogenous lactate infusion improved neurocognitive function of patients with mild traumatic brain injury. Asian J Neurosurg. 2016;11:151-9. https://doi.org/10.4103/1793-5482.145375
- Matsui T, Omuro H, Liu YF, Soya M, Shima T, McEwen BS, Soya H. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci U S A. 2017;114:6358-63. https://doi.org/10.1073/pnas.1702739114
- Rasmussen P, Wyss MT, Lundby C. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 2011;25:2865-73. https://doi.org/10.1096/fj.11-183822
- Barros, LF. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013;36:396-404. https://doi.org/10.1016/j.tins.2013.04.002
- Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA. Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab. 2003;23:658-64. https://doi.org/10.1097/01.WCB.0000063991.19746.11
- Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem. 1997;69:1484-90. https://doi.org/10.1046/j.1471-4159.1997.69041484.x
- Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl). 2018;235:2195-220. https://doi.org/10.1007/s00213-018-4950-4
- Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11:1164-78. https://doi.org/10.5114/aoms.2015.56342
- Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39:728-34. https://doi.org/10.1249/mss.0b013e31802f04c7
- Schiffer T, Schulte S, Sperlich B, Achtzehn S, Fricke H, Struder HK. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci Lett. 2011;488:234-7. https://doi.org/10.1016/j.neulet.2010.11.035
- Maderova D, Krumpolec P, Slobodova L, Schon M, Tirpakova V, Kovanicova Z, Klepochova R, Vajda M, Sutovsky S, Cvecka J, Valkovic L, Turcani P, Krssak M, Sedliak M, Tsai CL, Ukropcova B, Ukropec J. Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides. 2019;78:101961. https://doi.org/10.1016/j.npep.2019.101961
- Pageaux B, Marcora SM, Rozand V, Lepers R. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci. 2015;9:67. https://doi.org/10.3389/fnhum.2015.00067
- Shuai L, Daley D, Wang YF, Zhang JS, Kong YT, Tan X, Ji N. Ji. Executive function training for children with attention deficit hyperactivity disorder. Chin Med J. (Engl). 2017;130:549-58. https://doi.org/10.4103/0366-6999.200541