초록
최근 빅데이터가 사회, 경제적으로 중요해지면서, 무분별한 적용으로 인해 많은 문제가 발생하고 있다. 빅데이터의 활용가치는 데이터 안에 숨어있는 가치 있는 정보의 의미를 알아내는 것이 중요하다. 특히 고객의 행동패턴이나 경험 등을 예측하기 위하여, 기업내의 CRM (Customer Relationship Management)에서 추출한 정형데이터나 SNS(Social Network Service) 등에서 추출한 비정형데이터를 모집단으로 규정하고, 해석하는 과정 등에서 수많은 오류가 발생할 수 있지만, 대부분 이를 간과하고 있는 것이 현실이다. 이는, 데이터 분석기술 외에 고려해야 할 사항이 유의미한 패턴으로 나타나야 할 데이터들이 모집단 안에 빠져있음을 나타내는 것이기도 한다. 이에 본 연구에서는 그 모집단 설정의 오류 발생의 원인이 사람과 사람, 사람과 사물간의 관계와 상호작용이 강한 경우에 발생하는 데이터의 측정과 해석은 그 강도가 강한 경우에는 User eXerience(UX)와 ethnography(민속지학) 관점으로 수집된 데이터를 모집단에 포함하는 것이 중요하다는 것을 Big data 적용의 다양한 사례를 비교하여 도출하였다. 그리고 도출된 의미를 파악하여 최적의 방향을 제안하였다.
As big data become more important socially and economically in recent years, many problems have been derived from the indiscriminate application of big data. Big data are valuable because it can figure out the meaning of informative information hidden within the data. In particular, to predict customer behavior patterns and experiences, structured data that were extracted from Customer Relationship Management (CRM) or unstructured data that were extracted from Social Network Service(SNS) can be defined as a population to interpret the data, during which many errors can occur. However, those errors are usually overlooked. In addition to data analysis techniques, some data, which should be considered in the analysis, are not included in the population and thus do not show any meaningful patterns. Therefore, this study presents the measurement and interpretation of the data generated when the cause of error in the population setting is strong relationship and interaction between people or a person and an object. In other words, it will be shown that if the relationship and interaction are strong, it is important to include data collected from the perspective of user experience and ethnography in the population by comparing various cases of big data application, through which the meaning will be derived and the best direction will be suggested.