References
- Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003). Silk-based biomaterials. Biomaterials 24:401-416. https://doi.org/10.1016/S0142-9612(02)00353-8
- Cheng R, Qiu J, Zhou XY, Chen XH, Zhu C, Qin DN, Wang JW, Ni YH, Ji CB, Guo XR (2011) Knockdown of STEAP4 inhibits insulin-stimulated glucose transport and GLUT4 translocation via attenuated phosphorylation of Akt, independent of the effects of EEA1. Mol Med Rep 4:519-523. https://doi.org/10.3892/mmr.2011.443
- Deacon CF (2019) Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol (Lausanne) 10:80. https://doi.org/10.3389/fendo.2019.00080
-
Do SG, Park JH, Nam H, Kim JB, Lee JY, Oh YS, Suh JG (2012) Silk fibroin hydrolysate exerts an anti-diabetic effect by increasing pancreatic
$\beta$ cell mass in C57BL/KsJ-db/db mice. J Vet Sci 13:339-344. https://doi.org/10.4142/jvs.2012.13.4.339 - Freeman AM, Pennings N (2020) Insulin Resistance. In: StatPearls. StatPearls, Treasure Island, FL.
- Gotoh K, Izumi H, Kanamoto T, Tamada Y, Nakashima H (2000) Sulfated fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro. Biosci Biotechnol Biochem 64:1664-1670. https://doi.org/10.1271/bbb.64.1664
- Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420-2425. https://doi.org/10.2337/diabetes.51.8.2420
- Hyun CK, Kim IY, Frost SC (2004) Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J Nutr 134:3257-3263. https://doi.org/10.1093/jn/134.12.3257
- Igarashi K, Yoshioka K, Mizutani K, Miyakoshi M, Murakami T, Akizawa T (2006) Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci Biotechnol Biochem 70:517-520. https://doi.org/10.1271/bbb.70.517
- Jung EY, Lee HS, Lee HJ, Kim JM, Lee KW, Suh HJ (2010) Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles. Nutr Res 30:783-790. https://doi.org/10.1016/j.nutres.2010.10.006
- Kim HY, Park SY, Lee MH, Rho JH, Oh YJ, Jung HU, Yoo SH, Jeong NY, Lee HJ, Suh S, Seo SY, Cheong J, Jeong JS, Yoo YH (2015) Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. J Hepatol 63:477-485. https://doi.org/10.1016/j.jhep.2015.01.025
- Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26:244-251. https://doi.org/10.1016/j.tibtech.2008.02.006
- Korkmaz CG, Korkmaz KS, Kurys P, Elbi C, Wang L, Klokk TI, Hammarstrom C, Troen G, Svindland A, Hager GL, Saatcioglu F (2005) Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene 24:4934-4945. https://doi.org/10.1038/sj.onc.1208677
- Lebovitz HE (2001) Insulin resistance: Definition and consequences. Exp Clin Endocrinol Diabetes 109:S135-S148. https://doi.org/10.1055/s-2001-18576
- Lee KS, Kim BY, Kim DH, Jin BR (2012) Molecular cloning and characterization of the partial major ampullate silk protein gene from the spider Araneus ventricosus. J Asia Pac Entomol 15:641-646. https://doi.org/10.1016/j.aspen.2012.08.004
- Lee KS, Kim BY, Kim DH, Jin BR (2014) Spider silk fibroin enhances insulin secretion and reduces blood glucose levels in diabetic mice. J Asia-Pacific Entomol 19:907-909.
- Lee KS, Kim BY, Kim DH, Jin BR (2016) Recombinant spider silk fibroin protein produces a noncytotoxic and non-inflammatory response. J Asia-Pacific Entomol 17:1015-1018.
- Mohanty A, Sarma NP, Tyagi AK (1999) Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci 147:127-137. https://doi.org/10.1016/S0168-9452(99)00103-X
- Park JE, Jeong YJ, Park JB, Kim HY, Yoo YH, Lee KS, Yang WT, Kim DH, Kim JM (2019) Dietary exposure to transgenic rice expressing the spider silk protein fibroin reduces blood glucose levels in diabetic mice: The potential role of insulin receptor substrate-1 phosphorylation in adipocytes. Dev Reprod 23:223-229. https://doi.org/10.12717/DR.2019.23.3.223
- Park KJ, Jin HH, Hyun CK (2002) Antigenotoxicity of peptides produced from silk fibroin. Process Biochem 38:411-418. https://doi.org/10.1016/S0032-9592(02)00136-X
- Park S, Zhang T, Qiu JY, Wu X, Lee JY, Lee BY (2020) Acid hydrolyzed silk peptide consumption improves anti-diabetic symptoms by potentiating insulin secretion and preventing gut microbiome dysbiosis in non-obese type 2 diabetic animals. Nutrients 12:311. https://doi.org/10.3390/nu12020311
-
Park SY, Kim B, Lee YK, Lee S, Chun JM, Suh JG, Park JH (2020) Silk fibroin promotes the regeneration of pancreatic
$\beta$ -cells in the$C57BL/KsJ-Lepr^{db/db}$ mouse. Molecules 25:3259. https://doi.org/10.3390/molecules25143259 - Qin DN, Zhu JG, Ji CB, Chunmei-Shi, Kou CZ, Zhu GZ, Zhang CM, Wang YP, Ni YH, Guo XR (2011). Monoclonal antibody to six transmembrane epithelial antigen of prostate-4 influences insulin sensitivity by attenuating phosphorylation of P13K (P85) and Akt: Possible mitochondrial mechanism. J Bioenerg Biomembr 43:247-255. https://doi.org/10.1007/s10863-011-9360-9
- Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577-1585. https://doi.org/10.1007/s00125-017-4342-z
- Sanchez-Rangel E, Inzucchi SE (2017) Metformin: Clinical use in type 2 diabetes. Diabetologia 60:1586-1593. https://doi.org/10.1007/s00125-017-4336-x
- Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642-1646. https://doi.org/10.1126/science.1120781
- Sikkeland J, Saatcioglu F (2013) Differential expression and function of stamp family proteins in adipocyte differentiation. PLoS One 8:e68249. https://doi.org/10.1371/journal.pone.0068249
- Song YM, Lee YH, Kim JW, Ham DS, Kang ES, Cha BS, Lee HC, Lee BW (2015) Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMPactivated protein kinase-independent pathway. Autophagy 11:46-59. https://doi.org/10.4161/15548627.2014.984271
- Thomas CC, Philipson LH (2015) Update on diabetes classification. Med Clin North Am 99:1-16. https://doi.org/10.1016/j.mcna.2014.08.015
- Toki S (1997) Rapid and efficient agrobacterium-mediated transformation in rice. Plant Mol Bio Rep 15:16-21. https://doi.org/10.1007/BF02772109
- Wellen KE, Fucho R, Gregor MF, Furuhashi M, Morgan C, Lindstad T, Vaillancourt E, Gorgun CZ, Saatcioglu F, Hotamisligil GS (2007) Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell 129:537-548. https://doi.org/10.1016/j.cell.2007.02.049
- Woo SL, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T (2014) Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in dietinduced obesity. PLoS One 9:e91111. https://doi.org/10.1371/journal.pone.0091111