DOI QR코드

DOI QR Code

Photoelectrochemical Properties of Electrodeposited Cu2O Photocathode with Tailored Microstructures

미세구조가 제어된 전해도금 Cu2O 광양극의 광전기화학 특성

  • Jeong, Dasol (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jo, Woohyeon (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Jaebum (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Hyunsung (Nano Materials & Nano Technology Center, Korea Institute of Ceramic Engineering and Technology)
  • 정다솔 (한국세라믹기술원 나노소재공정센터) ;
  • 조우현 (한국세라믹기술원 나노소재공정센터) ;
  • 정재범 (한국세라믹기술원 나노소재공정센터) ;
  • 정현성 (한국세라믹기술원 나노소재공정센터)
  • Received : 2020.10.06
  • Accepted : 2020.10.28
  • Published : 2020.10.31

Abstract

Cu2O films as a photocathode for photoelectrochemical water splitting were potentiostatically deposited on FTO glasses. The morphology and composition of the electrodeposited Cu2O films were adjusted by the applied potentials. The potential-dependent grain size of Cu2O films was characterized by XRD and SEM analysis. Photoelectrochemical properties of the fabricated Cu2O photocathodes were investigated with photocurrents as a function of potentials under 1 sun condition of 100mW/㎠. Photocurrents of the electrodeposited Cu2O films were controlled with the tailored surface morphologies of Cu2O photocathodes.

Keywords

References

  1. Walter, M.G., E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori and N.S. Lewis, Solar water splitting cells. Chem. Rev. 110 (2010). pp. 6446-6473. https://doi.org/10.1021/cr1002326
  2. Su, J., T. Minegishi, M. Katayama and K. Domen, Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight. J. Mater. Chem. A 5 (2017). pp. 4486-4492. https://doi.org/10.1039/C6TA10490H
  3. Kang, D., J.L. Young, H. Lim, W.E. Klein, H. Chen, Y. Xi, B. Gai, T.G. Deutsch and J. Yoon, Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2 (2017). p. 17043. https://doi.org/10.1038/nenergy.2017.43
  4. Alqahtani, M., S. Sathasivam, F. Cui, L. Steier, X. Xia, C. Blackman, E. Kim, H. Shin, M. Benamara and Y.I. Mazur, Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. J. Mater. Chem. A 7 (2019). pp. 8550-8558. https://doi.org/10.1039/C9TA01328H
  5. Lee, M.H., K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y.Z. Chen, J. Nah, T.S. Matthews, Y.L. Chueh and J.W. Ager, p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. Engl. 51 (2012). pp. 10760-10764. https://doi.org/10.1002/anie.201203174
  6. Bagal, I.V., N.R. Chodankar, M.A. Hassan, A. Waseem, M.A. Johar, D.-H. Kim and S.-W. Ryu, $Cu_2O$ as an emerging photocathode for solar water splitting-a status review. Int. J. Hydrog. Energy 44 (2019). pp. 21351-21378. https://doi.org/10.1016/j.ijhydene.2019.06.184
  7. Liyanaarachchi, U., C. Fernando, K. Foo, U. Hashim and M. Maza, Structural and Photoelectrochemical Properties of p-$Cu_2O$ Nano-Surfaces Prepared by Oxidizing Copper Sheets with a Slow Heating Rate Exhibiting the Highest Photocurrent and $H_2$ Evaluation Rate. Chin. J. Phys. 53 (2015). pp. 143-160.
  8. Tawfik, W.Z., M.A. Hassan, M.A. Johar, S.-W. Ryu and J.K. Lee, Highly conversion efficiency of solar water splitting over p-$Cu_2O$/ZnO photocatalyst grown on a metallic substrate. J. Catal. 374 (2019). pp. 276-283. https://doi.org/10.1016/j.jcat.2019.04.045
  9. John, S. and S.C. Roy, CuO/$Cu_2O$ nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion. Appl. Surf. Sci. 509 (2020). p. 144703. https://doi.org/10.1016/j.apsusc.2019.144703
  10. Lim, Y.-F., C.S. Chua, C.J.J. Lee and D. Chi, Sol-gel deposited $Cu_2O$ and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16 (2014). pp. 25928-25934. https://doi.org/10.1039/C4CP03241A
  11. Xue, J., Q. Shen, W. Liang, X. Liu, L. Bian and B. Xu, Preparation and formation mechanism of smooth and uniform $Cu_2O$ thin films by electrodeposition method. Surf. Coat. Technol. 216 (2013). pp. 166-171. https://doi.org/10.1016/j.surfcoat.2012.11.051
  12. Kim, M., S. Yoon, H. Jung, K.-J. Lee, D.-C. Lim, I.-S. Kim, B. Yoo and J.-H. Lim, The influence of polarity of electrodeposited $Cu_2O$ thin films on the photoelectrochemical performance. Jpn. J. Appl. Phys. 53 (2014). p. 08NJ01. https://doi.org/10.7567/JJAP.53.08NJ01
  13. Golden, T.D., M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen and J.A. Switzer, Electrochemical deposition of copper (I) oxide films. Chem. Mater. 8 (1996). pp. 2499-2504. https://doi.org/10.1021/cm9602095
  14. Paracchino, A., J.C. Brauer, J.-E. Moser, E. Thimsen and M. Graetzel, Synthesis and characterization of high-photoactivity electrodeposited $Cu_2O$ solar absorber by photoelectrochemistry and ultrafast spectroscopy. The Journal of Physical Chemistry C 116 (2012). pp. 7341-7350. https://doi.org/10.1021/jp301176y
  15. Zhang, Z., W. Hu, Y. Deng, C. Zhong, H. Wang, Y. Wu and L. Liu, The effect of complexing agents on the oriented growth of electrodeposited microcrystalline cuprous oxide film. Materials Research Bulletin 47 (2012). pp. 2561-2565. https://doi.org/10.1016/j.materresbull.2012.04.146
  16. Ho, J.-Y. and M.H. Huang, Synthesis of submicrometer-sized $Cu_2O$ crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. The Journal of Physical Chemistry C 113 (2009). pp. 14159-14164. https://doi.org/10.1021/jp903928p
  17. Chen, T., A. Kitada, K. Fukami and K. Murase, Determination of Stability Constants of Copper (II)-Lactate Complexes in $Cu_2O$ Electrodeposition Baths by UV-vis Absorption Spectra Factor Analysis. J. Electrochem. Soc. 166 (2019). p. D761. https://doi.org/10.1149/2.1231914jes
  18. Zhou, Y. and J.A. Switzer, Galvanostatic electrodeposition and microstructure of copper (I) oxide film. Mater. Res. Innov. 2 (1998). pp. 22-27. https://doi.org/10.1007/s100190050056
  19. Bohannan, E.W., L.-Y. Huang, F.S. Miller, M.G. Shumsky and J.A. Switzer, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/$Cu_2O$ layered nanostructures. Langmuir 15 (1999). pp. 813-818. https://doi.org/10.1021/la980825a
  20. Yang, Y., D. Xu, Q. Wu and P. Diao, $Cu_2O$/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6 (2016). pp. 1-13. https://doi.org/10.1038/s41598-016-0001-8
  21. Paracchino, A., V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10 (2011). pp. 456-461. https://doi.org/10.1038/nmat3017
  22. Yoon, S., J.-H. Lim and B. Yoo, Electrochemical synthesis of cuprous oxide on highly conducting metal micro-pillar arrays for water splitting. J. Alloys Compd. 677 (2016). pp. 66-71. https://doi.org/10.1016/j.jallcom.2016.03.183