References
- Nguyen Bao Trung, Tran Van Tam, Hye Ryeon Kim, Seung Hyun Hur, Eui Jung Kim, Won Mook Choi, Three-dimensional hollow balls of graphene-polyaniline hybrids for supercapacitor applications, Chemical Engineering Journal. 255 (2014) 89-96. https://doi.org/10.1016/j.cej.2014.06.028
- Eun Hee Jo, Ji-Hyuk Choi, Su-Ryeon Park, Chong Min Lee, Hankwon Chang, Hee Dong Jang, Size and Structural Effect of Crumpled Graphene Balls on the Electrochemical Properties for Supercapacitor Application, Electrochimica Acta. 222 (2016) 58-63. https://doi.org/10.1016/j.electacta.2016.11.016
- Jie Tian, Sai Wu, Xianglu Yin, Wei Wu, Novel preparation of hydrophilic graphene_graphene oxide nanosheets for supercapacitor electrode, Applied Surface Science. 496 (2019) 143696. https://doi.org/10.1016/j.apsusc.2019.143696
- Huaping Wang, Gui Yu, Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication, Advanced Materials. 28(25) (2016) 4956-4975. https://doi.org/10.1002/adma.201505123
- Hwee Ling Poh, Filip Sanek, Adriano Ambrosi, Guanjia Zhao, Zdenek Sofer and Martin Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties, Nanoscale 4. (2012) 3515-3522. https://doi.org/10.1039/c2nr30490b
- N.I. Zaabaa, K.L. Fooa,*, U. Hashima,d, S.J.Tanb,c, Wei-Wen Liua, C.H. Voona, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering. 184 (2017) 469-477. https://doi.org/10.1016/j.proeng.2017.04.118
- In Hyuk Son, Jong Hwan Park, Seongyong Park, Kwangjin Park, Sangil Han, Jaeho Shin, Seok-Gwang Doo, Yunil Hwang, Hyuk Chang & Jang Wook Choi, Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities, Nat Commun 8. 1561 (2017). https://doi.org/10.1038/s41467-017-01823-7
- Choi, S., Ko, Y., Lee, J. et al. Rapid continuous synthesis of spherical reduced graphene ballnickel oxide composite for lithium ion batteries. Sci Rep 4 5786 (2015). https://doi.org/10.1038/srep05786
- Seung Ho Choi, Yun Chan Kang, Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries, CARBON 79. (2014) 58-66. https://doi.org/10.1016/j.carbon.2014.07.042
- Deqiang Chen, Xiang Liu, Huali Nie, Crumpled graphene balls as rapid and efficient adsorbents for removal of copper ions, Journal of Colloid and Interface Science. 530 (2018) 46-51. https://doi.org/10.1016/j.jcis.2018.06.051
- Naderi M, Surface Area: Brunauer- Emmett- Teller (BET), Progress in Filtration and Separation. (2015) 585-608.
- Kyoung Hwan Kim, MinHo Yang, Kyeong Min Cho, Young-Si Jun, Sang Bok Lee & Hee-Tae Jung, High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures, Scientific Reports. volume 3 Article number: 3251 (2013).
- Mukesh Singha, Asha Yadav b, Shailendra Kumar c, Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction, Applied Surface Science. 326 (2015) Pages 236-242. https://doi.org/10.1016/j.apsusc.2014.11.121
- V. Rajeswaria, R. Jayavelb,A. Clara Dhanemozhi, Synthesis And Characterization Of Graphene-Zinc Oxide Nanocomposite Electrode Material For Supercapacitor Applications, Materials Today: Proceedings. 4 (2017) 645-652. https://doi.org/10.1016/j.matpr.2017.01.068
- Guex, L. G., Sacchi, B., Peuvot, K. F., Andersson, R. L., Pourrahimi, A. M., Strom, V, R. T. Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale. 9(27), (2017). 9562-9571. https://doi.org/10.1039/C7NR02943H
- R. Greef, Instrument methods in electrochemistry, John Wiley, first published, Ellis Horwood Limited, New York (1985), 263-268.