Acknowledgement
This work was supported by the Brain Korea 21 Plus Project in 2019. This research was supported by the Seoul National University Electric Power Research Institute.
References
- Dae-Woong, C., Joohn-Sheok, K., Seung-Ki, S.: Unified voltage modulation technique for real-time three-phase power conversion. IEEE Trans. Ind. Appl. 34(2), 374-380 (1998) https://doi.org/10.1109/28.663482
- Holtz, J.: Pulsewidth modulation-a survey. IEEE Trans. Ind. Electron. 39(5), 410-420 (1992) https://doi.org/10.1109/41.161472
- Gerada, D., Mebarki, A., Brown, N.L., Gerada, C., Cavagnino, A., Boglietti, A.: High-speed electrical machines: technologies, trends, and developments. IEEE Trans. Ind. Electron. 61(6), 2946-2959 (2014) https://doi.org/10.1109/TIE.2013.2286777
- Steimel, A.: Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison. IEEE Trans. Ind. Electron. 51(4), 810-820 (2004) https://doi.org/10.1109/TIE.2004.831730
- Stumpf, P., Jardan, R.K., Nagy, I.: Subharmonics generated by space vector modulation in ultrahigh speed drives. IEEE Trans. Ind. Electron. 59(2), 1029-1037 (2012) https://doi.org/10.1109/TIE.2011.2148683
- Ke, Z., Zhang, J., Raich, R.: Low-frequency current oscillation reduction for six-step operation of three-phase inverters. IEEE Trans. Power Electron. 32(4), 2948-2956 (2017) https://doi.org/10.1109/TPEL.2016.2570214
- Iwaji, Y., Sukegawa, T., Okuyama, T., Ikimi, T., Shigyo, M., Tobise, M.: A new PWM method to reduce beat phenomenon in large-capacity inverters with low switching frequency. IEEE Trans. Ind. Appl. 35(3), 606-612 (1999) https://doi.org/10.1109/28.767011
- Narayanan, G., Ranganathan, V.T.: Synchronised PWM strategies based on space vector approach. I. Principles of waveform generation. IEE Proc. Electr. Power Appl. 146(3), 267-275 (1999) https://doi.org/10.1049/ip-epa:19990118
- Narayanan, G., Ranganathan, V.T.: Synchronised PWM strategies based on space vector approach. II. Performance assessment and application to V/f drives. IEE Proc. Electr. Power Appl. 146(3), 276-281 (1999) https://doi.org/10.1049/ip-epa:19990119
- Yang, H., Zhang, Y., Yuan, G., Walker, P.D., Zhang, N.: Hybrid synchronized PWM schemes for closed-loop current control of high-power motor drives. IEEE Trans. Ind. Electron. 64(9), 6920-6929 (2017) https://doi.org/10.1109/TIE.2017.2686298
- Park, J., Jung, S., Ha, J.I.: Variable time step control for six-step operation in surface mounted permanent magnet machine drives. IEEE Trans. Power Electron. 33(99), 1501-1513 (2017) https://doi.org/10.1109/TPEL.2017.2676703
- Jung, S., Park, J., Chung, E., Ha, J.I.: Variable time step control with synchronous PWM in low frequency modulation index for AC machine drive. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-8 (2016)
- Miyajima, T., Fujimoto, H., Fujitsuna, M.: A precise model-based design of voltage phase controller for IPMSM. IEEE Trans. Power Electron. 28(12), 5655-5664 (2013) https://doi.org/10.1109/TPEL.2013.2259262
- Kim, H., Degner, M.W., Guerrero, J.M., Briz, F., Lorenz, R.D.: Discrete-time current regulator design for AC machine drives. IEEE Trans. Ind. Appl. 46(4), 1425-1435 (2010) https://doi.org/10.1109/TIA.2010.2049628
- Bon-Ho, B., Seung-Ki, S.: A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives. IEEE Trans. Ind. Appl. 39(3), 802-810 (2003) https://doi.org/10.1109/TIA.2003.810660
- Bohn, C., Atherton, D.P.: An analysis package comparing PID anti-windup strategies. IEEE Control Syst. 15(2), 34-40 (1995) https://doi.org/10.1109/37.375281
- Hanus, R., Kinnaert, M., Henrotte, J.-L.: Conditioning technique, a general anti-windup and bumpless transfer method. Automatica 23(6), 729-739 (1987) https://doi.org/10.1016/0005-1098(87)90029-X
- Choi, H., Hong, J., Ha, J.: Synchronous space vector voltage modulation of three-phase inverter with low switching number. In: 2018 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 436-441 (2018)