DOI QR코드

DOI QR Code

Model analysis, simplified control and sensitivity verification of modular multilevel DC-DC converter with parallel branches

  • Ren, Qiang (Department of National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Xiao, Fei (Department of National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Ai, Sheng (Department of National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering)
  • Received : 2019.03.15
  • Accepted : 2019.10.30
  • Published : 2020.03.20

Abstract

In view of the modular multilevel topology with its uses in medium-voltage DC vessel integrated power systems, this paper deals with typical modular multilevel DC-DC converter (MMDC) topologies and AC control methods. In terms of DC control, a brief introduction is first made about a MMDC topology with parallel branches and its static characteristics. Then, an analysis is focused on the modeling of the MMDC and its model simplification. An optimal control strategy is proposed for the simplified model. Finally, the sensitivity of this system to model and parameter uncertainties is verified both theoretically and experimentally. The obtained results show that the proposed MMDC consisting of a heterogeneous full-bridge submodule and a parallel-branch structure can make the submodule voltage self-balancing and the range of output voltage wide. The use of an optimal control strategy based on a simplified model can lead the system to achieve good static and dynamic performance and robustness.

Keywords

References

  1. Nadarajan, S., Gupta, A., Panda, S.: Review of smart grid requirements and design standards for future naval vessels. IEEE Int. Conf. Sustainable Energy Technol. 2017, 338-343 (2017)
  2. Akagi, H.: Classification, terminology, and application of the modular multilevel cascade converter (MMCC). IEEE Trans. Power Electron. 26(11), 3119-3130 (2011) https://doi.org/10.1109/TPEL.2011.2143431
  3. Rohner, S., Bernet, S., Hiller, M., Sommer, R.: Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2633-2642 (2010) https://doi.org/10.1109/TIE.2009.2031187
  4. Parker, M., Li, R., Stephen, F.: Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Trans. Ind. Electron. 60(2), 509-522 (2013) https://doi.org/10.1109/TIE.2012.2186774
  5. Far, A.A.J., Hajian, M., Jovcic, D., Yash, A.: High-power modular multilevel converter optimal design for DC/DC converter applications. IET Power Electron. 9(2), 247-255 (2016) https://doi.org/10.1049/iet-pel.2015.0516
  6. Adam, G.P., Gowaid, I.A., Finney, S.J., Holliday, D.: Review of DC-DC converters for multi-terminal HVDC transmission networks. IET Power Electron. 9(2), 281-296 (2016) https://doi.org/10.1049/iet-pel.2015.0530
  7. Luth, T., Merlin, M.M.C., Green, T.C., Hassan, F., Barker, C.D.: High-frequency operation of a DC/AC/DC system for HVDC applications. IEEE Trans. Power Electron. 29(8), 4107-4115 (2014) https://doi.org/10.1109/TPEL.2013.2292614
  8. Sun, C., Zhang, J., Cai, X., Shi, G.: Voltage balancing control of isolated modular multilevel dc-dc converter for use in dc grids with zero voltage switching. IET Power Electron. 9(2), 270-280 (2016) https://doi.org/10.1049/iet-pel.2015.0409
  9. Kenzelmann, S., Rufer, A., Dujic, D., Canales, F., Novaes, Y.R.: Isolated DC/DC structure based on modular multilevel converter. IEEE Trans. Power Electron. 30(1), 89-98 (2015) https://doi.org/10.1109/TPEL.2014.2305976
  10. Zhu, H., Li, Y., Wang, P., Li, Z., Chu, Z.: Design of power electronic transformer based on modular multilevel converter. In: IEEE Power and Energy Eng. Conf., IEEE, pp. 1-4 (2012)
  11. Schon, A., Bakran, M.M.: High power HVDC-DC converters for the interconnection of HVDC lines with different line topologies. In: IEEE 2014 International Power Electron. Conf., pp. 3255-3262 (2014)
  12. Lin, W., Wen, J., Cheng, S.: Multiport DC-DC autotransformer for interconnecting multiple high voltage DC systems at low cost. IEEE Trans. Power Electron. 30(12), 6648-6660 (2015) https://doi.org/10.1109/TPEL.2015.2397172
  13. Zhang, X., Green, T.C., Junyent-Ferre, A.: A new resonant modular multilevel step-down DC-DC converter with inherent-balancing. IEEE Trans. Power Electron. 30(1), 78-88 (2015) https://doi.org/10.1109/TPEL.2014.2301974
  14. Zhang, X., Xiang, X., Green, T.C., Yang, X.: Operation and performance of resonant modular multilevel converter with flexible step ratio. IEEE Trans. Ind. Electron (2017). https://doi.org/10.1109/TIE.2017.2677333
  15. Arifa, M.K., Sheela, J., Leena, T.: Step down resonant modular multilevel DC-DC converter. In: IEEE NCREE, pp. 293-302 (2015)
  16. Zhang, X., Green, T.: The modular multilevel converter for high step-up ratio DC-DC conversion. IEEE Trans. Ind. Electron. 62(8), 4925-4936 (2015) https://doi.org/10.1109/TIE.2015.2393846
  17. Ferreira, J.A.: The multilevel modular dc converter. IEEE Trans. Power Electron. 28(10), 4460-4465 (2013) https://doi.org/10.1109/TPEL.2012.2237413
  18. Kish, G.J., Ranjram, M., Lehn, P.: A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects. IEEE Trans. Power Electron. 30(1), 148-162 (2015) https://doi.org/10.1109/TPEL.2013.2295967
  19. Montesinos, M.D., Massot, C.M., Bergas, J.J., Galceran, A.S., Alfred, R.: Design and control of a modular multilevel DC/DC converter for regenerative applications. IEEE Trans. Power Electron. 28(8), 3970-3979 (2013) https://doi.org/10.1109/TPEL.2012.2231702
  20. Massot, C.M., Montesinos, M.D., Bergas, J.J., Rufer, A.: Multilevel modular DC/DC converter for regenerative braking using supercapacitors. J. Energy Power Eng. 6(7), 1131-1137 (2012)
  21. Jiang, W., Huang, L., Zhang, L., Zhao, H., Wang, L., Chen, W.: Control of active power exchange with auxiliary power loop in single-phase cascaded multilevel converter based energy storage system. IEEE Trans. Power Electron. 32(2), 1518-1532 (2015) https://doi.org/10.1109/TPEL.2016.2543751
  22. Echeverria, J., Kouro, S., Perez, M., Aburub, H.: Multi-modular cascaded DC-DC converter for HVDC grid connection of large-scale photovoltaic power system. In: Proc. IEEE 39th IECON, pp. 6999-7005 (2013)
  23. Hu, Y., Zeng, R., Cao, W., Zhang, J., Finney, S.J.: Design of a modular, high step-up ratio DC-DC converter for HVDC applications integrating offshore wind power. IEEE Trans. Ind. Electron. 63(4), 2190-2202 (2016) https://doi.org/10.1109/TIE.2015.2510975
  24. Zhao, B., Song, Q., Li, J., et al.: Comparative analysis of multilevel-high-frequency-link and multilevel-DC-link DC-DC transformers based on MMC and dual-active-bridge for MVDC application. IEEE Trans. Power Electron. (2017). https://doi.org/10.1109/tpel.2017.2700378
  25. Ren, Q., Sun, C., Xiao, F.: A modular multilevel DC-DC converter topology with a wide range of output voltage. IEEE Trans. Power Electron. 32(8), 6018-6030 (2017) https://doi.org/10.1109/TPEL.2016.2620153
  26. Peng, F.Z.: A generalized multilevel inverter topology with self voltage balancing. IEEE Trans. Ind. Appl. 37(2), 611-618 (2001) https://doi.org/10.1109/28.913728
  27. Ilves, K., Taffner, F., Norrga, S., Antonopoulos, A., Harnefors, L., Nee, H.P.: A submodule implementation for parallel connection of capacitors in modular multilevel converters. IEEE Trans. Power Electron. 30(7), 3518-3527 (2015) https://doi.org/10.1109/TPEL.2014.2345460
  28. Seeman, M.D., Sanders, S.R.: Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron. 23(2), 841-851 (2008) https://doi.org/10.1109/TPEL.2007.915182
  29. Lopez, A., Diez, R., Perilla, G., Patino, D.: Analysis and comparison of three topologies of the ladder multilevel DC/DC converter. IEEE Trans. Power Electron. 27(7), 3119-3127 (2012) https://doi.org/10.1109/TPEL.2012.2183388
  30. Richard, C., Robert, H.: The performance of feedback control systems. In: Modern control systems, 12th ed., USA, Pearson, vol. 7, pp. 260-266 (2011)