DOI QR코드

DOI QR Code

Driver circuit to eliminate bridge leg crosstalk in SiC MOSFETs

  • Gao, Tian (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Cheng, Ze (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Wang, Qi (School of Electronics and Information, Northwestern Polytechnical University) ;
  • Yang, Yan (School of Electronics and Information, Northwestern Polytechnical University)
  • Received : 2019.05.08
  • Accepted : 2019.11.04
  • Published : 2020.03.20

Abstract

This study involves the crosstalk caused by the high-frequency parasitic parameters in the driver circuits of SiC MOSFETs, which are high-speed switching devices. A lumped parameter model for the high-frequency crosstalk of a driver circuit was established. Then, the relationships between the parameters and crosstalk of the driver circuit were analyzed. Finally, an improved SiC MOSFET driver circuit was proposed. The optimized driver circuit parameters can reduce the driver signal oscillation and minimize the crosstalk of the driver circuit. Verification was performed on a test platform of a full-bridge LLC converter. Test results show that the improved driver circuit can remarkably suppress crosstalk, increase the turn-off speed of SiC MOSFETs and reduce the switching loss. This demonstrates the effectiveness of the driver circuit.

Keywords

Acknowledgement

This paper is supported by the National Key Research and Development Program of China (Project No.: 2017YFF0104402), the China Aviation Science Fund (No.: 2018ZC53031), and the Science and Technology Project of Xi'an City [No.: 201805042YD20CG26(8)].

References

  1. Rothmund, D., Bortis, D., Kolar, J.W.: Accurate transient calorimetric measurement of soft-switching losses of 10 kV SiC MOSFETs. In: 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (2016)
  2. Johannesson, D., Nawaz, M., Ilves, K.: Assessment of 10 kV, 100 A silicon carbide MOSFET power modules. IEEE Trans. Power Electron. 12(99), 1 (2018)
  3. Yan, Q., Yuan, X., Geng, Y.: Performance evaluation of split output converters with SiC MOSFETs and SiC Schottky diodes. IEEE Trans. Power Electron. 32(1), 406-422 (2019) https://doi.org/10.1109/TPEL.2016.2536643
  4. Kwon, O., Kwon, J.M., Kwon, B.H.: Highly efficient single-phase three-level three-leg converter using SiC MOSFETS for AC-AC applications. IEEE Trans. Ind. Electron. 65(9), 7015-7024 (2018) https://doi.org/10.1109/TIE.2018.2793231
  5. Yin, S., Tseng, K.J., Tong, C.F.: A novel gate assisted circuit to reduce switching loss and eliminate shoot-through in SiC half bridge configuration. In: A 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3058-3064 (2016)
  6. Chen, Z., Yao, Y., Boroyevich, D.: A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications. IEEE Trans. Power Electron. 29(5), 2307-2320 (2014) https://doi.org/10.1109/TPEL.2013.2283245
  7. Ke, J., Zhao, Z., Wei, C.: Effect of the parasitic inductance on SiC MOSFET switching characteristics. Semicond. Technol. 42, 194-199 (2017)
  8. Zhang, B., Xie, S., Xu, J.: A magnetic coupling based gate driver for crosstalk suppression of SiC MOSFETs. IEEE Trans. Ind. Electron. 64, 9052-9063 (2017) https://doi.org/10.1109/TIE.2017.2736500
  9. Wang, J., Chung, S.H.: A novel RCD level shifter for elimination of spurious turn-on in the bridge-leg configuration. IEEE Trans. Power Electron. 30(2), 976-984 (2014) https://doi.org/10.1109/TPEL.2014.2310898
  10. Chen, Z., Danilovic, M., Boroyevich, D.: Modularized design consideration of a general-purpose, high-speedphase-leg PEBB based on SiC MOSFETs. In: European Conference on Power Electronics and Applications. IEEE, pp 1-10 (2011)
  11. Zushi, Y., Sato, S., Matsui, K.: A novel gate assist circuit for quick and stable driving of SiC-JFETs in a 3-phase inverter. In: Applied Power Electronics Conference and Exposition, pp. 1734-1739 (2012)
  12. Zhang, Z., Wang, F., Tolbert, L.M.: Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration. IEEE Trans. Power Electron. 29(4), 1986-1997 (2013) https://doi.org/10.1109/TPEL.2013.2268058
  13. Josifovic, I., Popovic-Gerber, J., Ferreira, J.A.: Improving SiC JFET switching behavior under influence of circuit parasitics. IEEE Trans. Power Electron. 27(8), 3843-3854 (2012) https://doi.org/10.1109/TPEL.2012.2185951
  14. Yamamoto, M.: Full SiC soft switching inverter-stability performance for false turn on phenomenon. In: IEEE International Conference on Power Electronics & Drive Systems, pp. 159-164 (2013)
  15. Zhou, Q., Gao, F., Jiang, T.: A gate driver of SiC MOSFET with passive triggered auxiliary transistor in a phase-leg configuration. In: Energy Conversion Congress and Exposition, pp. 7023-7030 (2015)
  16. Xie, R., Wang, H., Tang, G.: An analytical model for false turn-on evaluation of GaN transistor in bridge-leg configuration. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE (2016)
  17. Martinez, W.H., Nishigaki, A., Umegami, H.: An analysis of false turn-on mechanism on high-frequency power devices. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE (2015)
  18. Khanna, R., Amrhein, A., Stanchina, W.: An analytical model for evaluating the influence of device parasitics on Cdv/dt induced false turn-on in SiC MOSFETs. In: Applied Power Electronics Conference & Exposition. IEEE (2013)
  19. Wang, J., Chung, S.H.: A novel RCD level shifter for elimination of spurious turn-on in the bridge-leg configuration. IEEE Trans. Power Electron. 30(2), 976-984 (2015) https://doi.org/10.1109/TPEL.2014.2310898
  20. Reusch, D., Strydom, J.: Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter. IEEE Trans. Power Electron. 29(4), 2008-2015 (2014) https://doi.org/10.1109/TPEL.2013.2266103
  21. Wang, J., Shu-Hung Chung, H.: Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter. IEEE Trans. Power Electron. 29(12), 6672-6685 (2014) https://doi.org/10.1109/tpel.2014.2304454
  22. Shin, J., Kim, W., Ngo, K.D.T.: DBC switch module for management of temperature and noise in 220-W/in3 power assembly. IEEE Trans. Power Electron. 2015(4), 1 (2015)
  23. Zdanowski, M., Barlik, R.: Analytical and experimental determination of the parasitic parameters in high-frequency inductor. Bull. Pol. Acad. Sci. Tech. Sci. 65(1), 1 (2017)
  24. Zhou, H.X., Chen, B: Physics-based model for emitter turn-off thyristor (ETO). In: Power Electronics Specialists Conference. IEEE (2007)
  25. Zheng, Y.: Secrets of Signal Integrity. Mechanical Industry Press, New York (2013)