DOI QR코드

DOI QR Code

Current harmonic selection for torque ripple suppression based on analytical torque model of PMSMs

  • Zhong, Zaimin (School of Automotive Studies, Tongji University) ;
  • Zhou, Shuihua (School of Automotive Studies, Tongji University) ;
  • Hu, Chengyu (School of Automotive Studies, Tongji University) ;
  • You, Junming (School of Automotive Studies, Tongji University)
  • Received : 2020.02.21
  • Accepted : 2020.04.22
  • Published : 2020.07.20

Abstract

For permanent magnet synchronous motors (PMSMs) without sufficient design optimization, it is necessary to inject current harmonics to suppress torque ripple. Due to the influence of magnetic saturation, the current harmonics for torque ripple suppression changes with the electrical loads. Based on an existing analytical torque model of a PMSM considering spatial harmonics and magnetic saturation, this paper established a torque harmonic coupling model through a Taylor expansion and a harmonic balance method. Then, based on the torque harmonic coupling model, current harmonic selection for torque ripple minimization was proposed. The validity of the torque harmonic coupling model and current harmonic selection was verified by a finite element analysis (FEA) and experiments on a laboratory PMSM drive system.

Keywords

Acknowledgement

This work was supported by the National Key Research and Development Plan of China under Grant 2017YFB0103200.

References

  1. Cai, W.: Starting engines and powering electric loads with one machine. IEEE Ind. Appl. Mag. 12(6), 29-38 (2006). https://doi.org/10.1109/IA-M.2006.248011
  2. Zhu, Z., Howe, D.: Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 746-765 (2007) https://doi.org/10.1109/JPROC.2006.892482
  3. Liu, X., Chen, H., et al.: Research on the performances and parameters of interior PMSM used for electric vehicles. IEEE Trans. Ind. Electron. 63(6), 3533-3545 (2016). https://doi.org/10.1109/TIE.2016.2524415
  4. Sun, X., et al.: Speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans. Ind. Electron. 67(7), 6089-6100 (2019) https://doi.org/10.1109/tie.2019.2947875
  5. Qin, Y., et al.: Noise and vibration suppression in hybrid electric vehicles: state of the art and challenges. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2020.109782
  6. Islam, R., Husain, I., et al.: Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl. 45(1), 152-160 (2007) https://doi.org/10.1109/TIA.2008.2009653
  7. Bianchi, N., Bolognani, S.: Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl. 38(5), 1259-1265 (2002) https://doi.org/10.1109/TIA.2002.802989
  8. Kim, K.-C.: A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor. IEEE Trans. Magn. 50(2), 793-796 (2014) https://doi.org/10.1109/TMAG.2013.2285234
  9. Shi, Z., Sun, X., et al.: Torque analysis and dynamic performance improvement of a PMSM for EVs by skew angle optimization. IEEE Trans. Appl. Supercond. 29(2), 1-5 (2019)
  10. Sun, X., Shi, Z., et al.: Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2965463
  11. Feng, G., Lai, C., et al.: Multiple reference frame based torque ripple minimization for PMSM drive under both steady-state and transient conditions. IEEE Trans. Power Electron. (2018). https://doi.org/10.1109/TPEL.2018.2876607
  12. Feng, G., Lai, C., Kar, N.C.: A closed-loop fuzzy-logic-based current controller for PMSM torque ripple minimization using the magnitude of speed harmonic as the feedback control signal. IEEE Trans. Ind. Electron. 64(4), 2642-2653 (2017) https://doi.org/10.1109/TIE.2016.2631524
  13. Chai, S., Wang, L., Rogers, E.: A cascade MPC control structure for a PMSM with speed ripple minimization. IEEE Trans. Ind. Electron. 60(8), 2978-2987 (2013) https://doi.org/10.1109/TIE.2012.2201432
  14. Qian, W., Panda, S.K., Xu, J.X.: Speed ripple minimization in PM synchronous motor using iterative learning control. IEEE Trans. Energy Convers. 20(1), 53-61 (2005) https://doi.org/10.1109/TEC.2004.841513
  15. Wallmark, O., Galic, J.: Prediction of dc-link current harmonics from PM-motor drives in railway applications. In: 2012 Electrical systems for aircraft, railway and ship propulsion. (2012)
  16. Chen, X., Wang, J., et al.: A high-fidelity and computationally efficient model for interior permanent-magnet machines considering the magnetic saturation, spatial harmonics, and iron loss effect. IEEE Trans. Ind. Electron. 62(7), 4044-4055 (2015) https://doi.org/10.1109/TIE.2014.2388200
  17. Boesing, M., Niessen, M., et al.: Modeling spatial harmonics and switching frequencies in PM synchronous machines and their electromagnetic forces. In: 2012 XXth international conference. (2012).
  18. Diao, K., Sun, X., et al.: Multiobjective system level optimization method for switched reluctance motor drive systems using finite element model. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2019.2962483
  19. Bo, G., Zhao, Y., Ruan, Y.: Torque ripple minimization in interior PM machines using FEM and multiple reference frames. In: 2006 1ST IEEE conference on industrial electronics and applications. (2006)
  20. Nakao, N., Akatsu, K.: Torque ripple control for synchronous motors using instantaneous torque estimation. In: 2011 IEEE energy conversion congress and exposition. (2011)
  21. Nakao, N., Akatsu, K.: Torque ripple suppression of permanent magnet synchronous motors considering total loss reduction. In: 2013 IEEE energy conversion congress and exposition. (2013)
  22. Nakao, N., Akatsu, K.: Suppressing pulsating torques: torque ripple control for synchronous motors. IEEE Ind. Appl. Mag. 20(6), 33-44 (2014) https://doi.org/10.1109/MIAS.2013.2288383
  23. Zhong, Z., Jiang, S., et al.: Magnetic coenergy based modelling of PMSM for HEV/EV application. Prog. Electromagn. Res. 50, 11-22 (2016) https://doi.org/10.2528/PIERM16061501
  24. Jeong, I., Nam, K.: Analytic expressions of torque and inductances via polynomial approximations of flux linkages. IEEE Trans. Magn. 51(7), 1-9 (2015) https://doi.org/10.1109/TMAG.2015.2394741
  25. Zhong, Z., Zhang, G., et al.: Torque ripple description and its suppression through flux linkage reconstruction. SAE Int. J. Altern. Powertrains. 6(2), 175-182 (2017) https://doi.org/10.4271/2017-01-9077
  26. Zhong, Z., Jiang, S., et al.: Active torque ripple reduction based on an analytical model of torque. IET Electr. Power Appl. 11(3), 331-341 (2017) https://doi.org/10.1049/iet-epa.2016.0475
  27. Lai, C., Feng, G., et al.: Torque ripple modeling and minimization for interior PMSM considering magnetic saturation. IEEE Trans. Power Electron. 33(3), 2417-2429 (2017) https://doi.org/10.1109/TPEL.2017.2695440
  28. Yi, P., Sun, Z., Wang, X.: Research on PMSM harmonic coupling models based on magnetic co-energy. IET Electr. Power Appl. 13(4), 571-579 (2019) https://doi.org/10.1049/iet-epa.2018.5196

Cited by

  1. Improved design of Lorentz force-type magnetic bearings for magnetically suspended gimballing flywheels vol.21, pp.3, 2020, https://doi.org/10.1007/s43236-020-00203-7
  2. Multiple reference frame-based current harmonic control for interior PMSMs considering motional EMF vol.21, pp.6, 2020, https://doi.org/10.1007/s43236-021-00238-4