Acknowledgement
This work was supported by the National Key Research and Development Plan of China under Grant 2017YFB0103200.
References
- Cai, W.: Starting engines and powering electric loads with one machine. IEEE Ind. Appl. Mag. 12(6), 29-38 (2006). https://doi.org/10.1109/IA-M.2006.248011
- Zhu, Z., Howe, D.: Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 746-765 (2007) https://doi.org/10.1109/JPROC.2006.892482
- Liu, X., Chen, H., et al.: Research on the performances and parameters of interior PMSM used for electric vehicles. IEEE Trans. Ind. Electron. 63(6), 3533-3545 (2016). https://doi.org/10.1109/TIE.2016.2524415
- Sun, X., et al.: Speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans. Ind. Electron. 67(7), 6089-6100 (2019) https://doi.org/10.1109/tie.2019.2947875
- Qin, Y., et al.: Noise and vibration suppression in hybrid electric vehicles: state of the art and challenges. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2020.109782
- Islam, R., Husain, I., et al.: Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl. 45(1), 152-160 (2007) https://doi.org/10.1109/TIA.2008.2009653
- Bianchi, N., Bolognani, S.: Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl. 38(5), 1259-1265 (2002) https://doi.org/10.1109/TIA.2002.802989
- Kim, K.-C.: A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor. IEEE Trans. Magn. 50(2), 793-796 (2014) https://doi.org/10.1109/TMAG.2013.2285234
- Shi, Z., Sun, X., et al.: Torque analysis and dynamic performance improvement of a PMSM for EVs by skew angle optimization. IEEE Trans. Appl. Supercond. 29(2), 1-5 (2019)
- Sun, X., Shi, Z., et al.: Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2965463
- Feng, G., Lai, C., et al.: Multiple reference frame based torque ripple minimization for PMSM drive under both steady-state and transient conditions. IEEE Trans. Power Electron. (2018). https://doi.org/10.1109/TPEL.2018.2876607
- Feng, G., Lai, C., Kar, N.C.: A closed-loop fuzzy-logic-based current controller for PMSM torque ripple minimization using the magnitude of speed harmonic as the feedback control signal. IEEE Trans. Ind. Electron. 64(4), 2642-2653 (2017) https://doi.org/10.1109/TIE.2016.2631524
- Chai, S., Wang, L., Rogers, E.: A cascade MPC control structure for a PMSM with speed ripple minimization. IEEE Trans. Ind. Electron. 60(8), 2978-2987 (2013) https://doi.org/10.1109/TIE.2012.2201432
- Qian, W., Panda, S.K., Xu, J.X.: Speed ripple minimization in PM synchronous motor using iterative learning control. IEEE Trans. Energy Convers. 20(1), 53-61 (2005) https://doi.org/10.1109/TEC.2004.841513
- Wallmark, O., Galic, J.: Prediction of dc-link current harmonics from PM-motor drives in railway applications. In: 2012 Electrical systems for aircraft, railway and ship propulsion. (2012)
- Chen, X., Wang, J., et al.: A high-fidelity and computationally efficient model for interior permanent-magnet machines considering the magnetic saturation, spatial harmonics, and iron loss effect. IEEE Trans. Ind. Electron. 62(7), 4044-4055 (2015) https://doi.org/10.1109/TIE.2014.2388200
- Boesing, M., Niessen, M., et al.: Modeling spatial harmonics and switching frequencies in PM synchronous machines and their electromagnetic forces. In: 2012 XXth international conference. (2012).
- Diao, K., Sun, X., et al.: Multiobjective system level optimization method for switched reluctance motor drive systems using finite element model. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2019.2962483
- Bo, G., Zhao, Y., Ruan, Y.: Torque ripple minimization in interior PM machines using FEM and multiple reference frames. In: 2006 1ST IEEE conference on industrial electronics and applications. (2006)
- Nakao, N., Akatsu, K.: Torque ripple control for synchronous motors using instantaneous torque estimation. In: 2011 IEEE energy conversion congress and exposition. (2011)
- Nakao, N., Akatsu, K.: Torque ripple suppression of permanent magnet synchronous motors considering total loss reduction. In: 2013 IEEE energy conversion congress and exposition. (2013)
- Nakao, N., Akatsu, K.: Suppressing pulsating torques: torque ripple control for synchronous motors. IEEE Ind. Appl. Mag. 20(6), 33-44 (2014) https://doi.org/10.1109/MIAS.2013.2288383
- Zhong, Z., Jiang, S., et al.: Magnetic coenergy based modelling of PMSM for HEV/EV application. Prog. Electromagn. Res. 50, 11-22 (2016) https://doi.org/10.2528/PIERM16061501
- Jeong, I., Nam, K.: Analytic expressions of torque and inductances via polynomial approximations of flux linkages. IEEE Trans. Magn. 51(7), 1-9 (2015) https://doi.org/10.1109/TMAG.2015.2394741
- Zhong, Z., Zhang, G., et al.: Torque ripple description and its suppression through flux linkage reconstruction. SAE Int. J. Altern. Powertrains. 6(2), 175-182 (2017) https://doi.org/10.4271/2017-01-9077
- Zhong, Z., Jiang, S., et al.: Active torque ripple reduction based on an analytical model of torque. IET Electr. Power Appl. 11(3), 331-341 (2017) https://doi.org/10.1049/iet-epa.2016.0475
- Lai, C., Feng, G., et al.: Torque ripple modeling and minimization for interior PMSM considering magnetic saturation. IEEE Trans. Power Electron. 33(3), 2417-2429 (2017) https://doi.org/10.1109/TPEL.2017.2695440
- Yi, P., Sun, Z., Wang, X.: Research on PMSM harmonic coupling models based on magnetic co-energy. IET Electr. Power Appl. 13(4), 571-579 (2019) https://doi.org/10.1049/iet-epa.2018.5196
Cited by
- Improved design of Lorentz force-type magnetic bearings for magnetically suspended gimballing flywheels vol.21, pp.3, 2020, https://doi.org/10.1007/s43236-020-00203-7
- Multiple reference frame-based current harmonic control for interior PMSMs considering motional EMF vol.21, pp.6, 2020, https://doi.org/10.1007/s43236-021-00238-4