DOI QR코드

DOI QR Code

Novel switched-coupled-inductor quasi-Z-source network with enhanced boost capability

  • Received : 2020.03.23
  • Accepted : 2020.07.28
  • Published : 2020.11.20

Abstract

In this paper, a novel impedance network referred to as a high-gain switched-coupled-inductor quasi-Z-source network (hgSCL-qZSN) is presented. The proposed topology employs a two-winding switched-coupled-inductor and a switched-capacitor in the impedance network, which offers a higher voltage boost capability when compared to most of the existing ZS-based topologies. In addition, the proposed SCL-qZSN has a low peak magnetizing current, which leads to a smaller core volume. This, in turn, reduces costs as well as core/winding losses. Moreover, to produce higher voltage gains, the presented hgSCL-qZSN requires lower winding turn ratios and shoot-through (ST) ratios, which leads to lower voltage stresses on the passive and active components. A detailed theoretical analysis of the proposed topology is presented in this paper, followed by a number of experimental results.

Keywords

References

  1. Peng, F.Z.: Z-source inverter. IEEE Trans. Ind. Appl. 33(2), 504-510 (2003) https://doi.org/10.1109/TIA.2003.808920
  2. Anderson, J., Peng, F.Z.: Four quasi-Z-Source inverters. In: 2008 IEEE Power Electronics Specialists Conference, Rhodes, pp 2743-2749 (2008). https://doi.org/10.1109/PESC.2008.4592360
  3. Ellabban, O., Abu-Rub, H.: Z-source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6-24 (2016) https://doi.org/10.1109/MIE.2015.2475475
  4. Bajestan, M.M., Madadi, H., Shamsinejad, M.A.: Control of a new stand-alone wind turbine-based variable speed permanent magnet synchronous generator using quasi-Z-source inverter. Electric Power Syst. Res 177, 1-15 (2019)
  5. Ge, B., Abu-Rub, H., Peng, F.Z., Lei, Q., Almeida, A.T.D., Ferreira, F.J.T.E., Sun, D., Liu, Y.: An energy-stored quasi-Z-source inverter for application to photovoltaic power system. IEEE Trans. Ind. Electronic. 60(10), 4468-4481 (2013) https://doi.org/10.1109/TIE.2012.2217711
  6. Li, Y., Jiang, S., Cintron-Rivera, J.G., Peng, F.Z.: Modeling and control of quasi-Z-source inverter for distributed generation applications. IEEE Trans. Ind. Electr. 60(4), 1532-1541 (2013) https://doi.org/10.1109/TIE.2012.2213551
  7. Zhu, M., Yu, K., Luo, F.L.: Switched inductor Z-source inverter. IEEE Trans. Power Electron. 25(8), 2150-2158 (2010) https://doi.org/10.1109/TPEL.2010.2046676
  8. Nguyen, M.K., Lim, Y.C., Cho, G.B.: Switched-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 26(11), 3183-3191 (2011) https://doi.org/10.1109/TPEL.2011.2141153
  9. Deng, K., Zheng, J., Mei, J.: Novel switched inductor quasi-Z-source inverter. J. Power Electron. 14(1), 11-21 (2014) https://doi.org/10.6113/JPE.2014.14.1.11
  10. Fathi, H., Madadi, H.: Enhanced-boost Z-source inverters with switched Z-impedance. IEEE Trans. Ind. Electron. 63(2), 691-703 (2016) https://doi.org/10.1109/TIE.2015.2477346
  11. Gajanayake, C.J., Luo, F.L., Gooi, H.B., So, P.L., Siow, L.K.: Extended-boost Z-source inverters. IEEE Trans. Power Electron. 25(10), 2642-2652 (2010) https://doi.org/10.1109/TPEL.2010.2050908
  12. Ahmad, A., Bussa, V.K., Singh, R.K., Mahanty, R.: Switched-boost-modifed Z-source inverter topologies with improved voltage gain capability. IEEE J. Emerg. Sel. Top. Power Electron 6(4), 2227-2244 (2018) https://doi.org/10.1109/jestpe.2018.2823379
  13. Ho, A., Chun, T., Kim, H.: Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters. IEEE Trans. Power Electronic. 30(10), 5681-5690 (2015) https://doi.org/10.1109/TPEL.2014.2379651
  14. Zhou, Y., Zhao, J., Huang, W., Zhao, P.: Tapped inductor quasi-Z-source inverter. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE (2012). https://doi.org/10.1109/APEC.2012.6166038
  15. Qian, W., Peng, F.Z., Cha, H.: Trans-Z-source inverters. IEEE Trans. Power Electronic. 26(12), 3453-3463 (2011) https://doi.org/10.1109/TPEL.2011.2122309
  16. Nguyen, M., Lim, Y., Kim, Y.: TZ-Source inverters. IEEE Trans. Ind. Electronic. 60(12), 5686-5695 (2013) https://doi.org/10.1109/TIE.2012.2229678
  17. Loh, P.C., Li, D., Blaabjerg, F.: Γ-Z-Source inverters. IEEE Trans. Power Electronic. 28(11), 4880-4884 (2013) https://doi.org/10.1109/TPEL.2013.2243755
  18. Nguyen, M., Lim, Y., Park, S.: Improved trans-Z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electronic. 28(1), 4500-4510 (2013) https://doi.org/10.1109/TPEL.2012.2233758
  19. Siwakoti, Y.P., Loh, P.C., Blaabjerg, F., Andreasen, S.J., Town, G.E.: Y-source boost dc/dc converter for distributed generation. IEEE Trans. Ind. Electronic. 62(2), 1059-1069 (2015) https://doi.org/10.1109/TIE.2014.2345336
  20. Siwakoti, Y.P., Blaabjerg, F., Loh, P.C.: Quasi-Y-source boost dc-dc converter. IEEE Trans. Power Electronic. 30(12), 6514-6519 (2015) https://doi.org/10.1109/TPEL.2015.2440781
  21. Siwakoti, Y.P., Blaabjerg, F., Loh, P.C.: New magnetically coupled impedance (Z-) source networks. IEEE Trans. Power Electronic. 31(11), 7419-7435 (2016) https://doi.org/10.1109/TPEL.2015.2459233
  22. Hakemi, A., Sanatkar-Chayjani, M., Monfared, M.: Δ-source impedance network. IEEE Trans. Ind. Electron. 64(10), 7842- 7851 (2017) https://doi.org/10.1109/TIE.2017.2698421
  23. Ahmed, H.F., Cha, H., Kim, S., Kim, H.: Switched-coupled-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 31(2), 1241-1254 (2016) https://doi.org/10.1109/TPEL.2015.2414971
  24. Bajestan, M. M., Shamsinejad, M. A.: Two new magnetically coupled-inductor Z-source inverters with high voltage boost capability. In: 2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), Tehran, pp. 419-425 (2018). https://doi.org/10.1109/PEDSTC.2018.8343834