Acknowledgement
The work was supported by National Natural Science Foundation of China (No. 61801407).
References
- Qin, Y.C., et al.: Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2020.109782
- Bian, X.L., Liu, L.C., Yan, J.Y.: A model for state-of-health estimation of lithium ion batteries based on charging profiles. Energy 177, 57-65 (2019) https://doi.org/10.1016/j.energy.2019.04.070
- Yang, J.F., et al.: Adaptive state-of-charge estimation based on a split battery model for electric vehicle applications. IEEE Trans. Veh. Technol. 66(12), 10889-10898 (2017) https://doi.org/10.1109/TVT.2017.2728806
- Liu, T., et al.: Adaptive hierarchical energy management design for a plug-in hybrid electric vehicle. IEEE Trans. Veh. Technol. 68(12), 11513-11522 (2019) https://doi.org/10.1109/tvt.2019.2926733
- Mandli, A.R., et al.: Fast computational framework for optimal life management of lithium ion batteries. Int. J. Energy Res. 42(5), 1973-1982 (2018) https://doi.org/10.1002/er.3996
- Fridholm, B., et al.: Estimating power capability of aged lithium-ion batteries in presence of communication delays. J. Power Sources 383, 24-33 (2018) https://doi.org/10.1016/j.jpowsour.2018.02.018
- Rosewater, D., et al.: Battery energy storage state-of-charge forecasting: models, optimization, and accuracy. IEEE Trans Smart Grid 10(3), 2453-2462 (2019) https://doi.org/10.1109/tsg.2018.2798165
- Misyris, G.S., et al.: State-of-charge estimation for li-ion batteries: a more accurate hybrid approach. IEEE Trans. Energy Convers. 34(1), 109-119 (2019) https://doi.org/10.1109/tec.2018.2861994
- Ouyang, M.G., et al.: Progress review of US-China joint research on advanced technologies for plug-in electric vehicles. Sci. China-Technol. Sci. 61(10), 1431-1445 (2018) https://doi.org/10.1007/s11431-017-9225-7
- Li, S.X., et al.: Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss. Int. J. Energy Res. 43(1), 417-429 (2019) https://doi.org/10.1002/er.4275
- Gao, Y.Z., et al.: Estimation of state-of-charge and state-of-health for lithium-ion degraded battery considering side reactions. J. Electrochem. Soc. 165(16), A4018-A4026 (2018) https://doi.org/10.1149/2.0981816jes
- Zhang, Z.L., et al.: SOC estimation of lithium-ion battery pack considering balancing current. IEEE Trans. Power Electron. 33(3), 2216-2226 (2018) https://doi.org/10.1109/TPEL.2017.2700324
- Liu, D.T., et al.: Hybrid state of charge estimation for lithium-ion battery under dynamic operating conditions. Int. J. Electr. Power Energy Syst. 110, 48-61 (2019) https://doi.org/10.1016/j.ijepes.2019.02.046
- Wang, T.P., et al.: Model-based unscented Kalman filter observer design for lithium-ion battery state of charge estimation. Int. J. Energy Res. 42(4), 1603-1614 (2018) https://doi.org/10.1002/er.3954
- Feng, F., et al.: Online estimation of model parameters and state of charge of LiFePO4 batteries using a novel open-circuit voltage at various ambient temperatures. Energies 8(4), 2950-2976 (2015) https://doi.org/10.3390/en8042950
- Sturm, J., et al.: State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter. Appl. Energy 223, 103-123 (2018) https://doi.org/10.1016/j.apenergy.2018.04.011
- Kim, T., Qiao, W., Qu, L.Y.: An enhanced hybrid battery model. IEEE Trans. Energy Convers. 34(4), 1848-1858 (2019) https://doi.org/10.1109/TEC.2019.2935700
- Saldana, G., et al.: Analysis of the current electric battery models for electric vehicle simulation. Energies. (2019). https://doi.org/10.3390/en12142750
- Wei, Z.B., et al.: Comparative study of methods for integrated model identifcation and state of charge estimation of lithium-ion battery. J. Power Sources 402, 189-197 (2018) https://doi.org/10.1016/j.jpowsour.2018.09.034
- Kim, T., et al.: An on-board model-based condition monitoring for lithium-ion batteries. IEEE Trans. Ind. Appl. 55(2), 1835-1843 (2019) https://doi.org/10.1109/tia.2018.2881183
- Shrivastava, P., et al.: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.06.040
- Talha, M., Asghar, F., Kim, S.H.: A neural network-based robust online SOC and SOH estimation for sealed lead-acid batteries in renewable systems. Arab. J. Sci. Eng. 44(3), 1869-1881 (2019) https://doi.org/10.1007/s13369-018-3200-8
- Bester, J.E., El Hajjaji A., Mabwe, A.M.: 41st Annual Conference of the IEEE-Industrial-Electronics-Society (IECON). Modelling of lithium-ion battery and SOC estimation using simple and extended discrete Kalman filters for aircraft energy management. Iecon 2015-41st Ann. Yokohama, JAPAN, pp 2433-2438 (2015)
- Wu, T.Z., et al.: Voltage-SOC balancing control scheme for series-connected lithium-ion battery packs. J. Energy Storage. (2019). https://doi.org/10.1016/j.est.2019.100895
- Zheng, L.F., et al.: Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter. Energy 158, 1028-1037 (2018) https://doi.org/10.1016/j.energy.2018.06.113
- Wu, X.G., Li, X.F., Du, J.Y.: State of charge estimation of lithium-ion batteries over wide temperature range using unscented Kalman filter. IEEE Access 6, 41993-42003 (2018) https://doi.org/10.1109/access.2018.2860050
- Afshar, S., Morris, K., Khajepour, A.: State-of-charge estimation using an EKF-based adaptive observer. IEEE Trans. Control Syst. Technol. 27(5), 1907-1923 (2019) https://doi.org/10.1109/tcst.2018.2842038
- Li, L.L., Liu, Z.F., Wang, C.H.: The open-circuit voltage characteristic and state of charge estimation for lithium-ion batteries based on an improved estimation algorithm. J. Test. Eval. 48(2), 1712-1730 (2020)
- Xu, Y.D., et al.: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter. Appl. Math. Model. 77, 1255-1272 (2020) https://doi.org/10.1016/j.apm.2019.09.011
- Li, B., Bei, S.Y.: Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter. Neural Comput. Appl. 31(12), 8171-8183 (2019) https://doi.org/10.1007/s00521-018-3901-7
- Guo, F., et al.: A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters. Energy 178, 79-88 (2019) https://doi.org/10.1016/j.energy.2019.04.126
- Wang, S.L., et al.: Adaptive state-of-charge estimation method for an aeronautical lithium-ion battery pack based on a reduced particle-unscented Kalman filter. J. Power Electron. 18(4), 1127-1139 (2018) https://doi.org/10.6113/JPE.2018.18.4.1127
- Mawonou, K.S.R., et al.: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. J. Power Sour. (2019). https://doi.org/10.1016/j.jpowsour.2019.226710
Cited by
- Speed-sensorless control of induction motors based on adaptive EKF vol.21, pp.12, 2020, https://doi.org/10.1007/s43236-021-00325-6