Acknowledgement
This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea under Grant 20193010025790.
References
- Li, X., Gao, W., Muto, H., Shimizu, Y., Ito, S., Dian, S.: A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precis. Eng. 37(3), 771-781 (2013) https://doi.org/10.1016/j.precisioneng.2013.03.005
- Blomdell, A., Dressler, I., Nilsson, K., Robertsson, A.: Flexible application development and high-performance motion control based on external sensing and reconfiguration of ABB industrial robot controllers. Proc. IEEE Int. Conf. Robotics and Automation, 62-66 (2010)
- Peshkin, M.A., Colgate, J.E., Wannasuphoprasit, W., Moore, C.A., Gillespie, R.B., Akella, P.: Cobot architecture. IEEE Trans. Robotics Autom. 17(4), 377-390 (2001) https://doi.org/10.1109/70.954751
- Zhang, Y., Xia, B., Yang, H.: Performance evaluation of an improved model predictive control with field oriented control as a benchmark. IET Electr. Power Appl. 11(5), 677-687 (2017) https://doi.org/10.1049/iet-epa.2015.0614
- Kim, J.-H., Choi, J.-W., Sul, S.-K.: High precision position control of linear permanent magnet synchronous motor for surface mount device placement system. Proc. Power Convers. Conf. Osaka 2002, 37-42 (2002)
- Katsura, S., Matsumoto, Y., Ohnishi, K.: Modeling of force sensing and validation of disturbance observer for force control. IECON'03, 291-296 (2003)
- Iwasaki, M., Shibata, T., Matsui, N.: Disturbance-observer-based nonlinear friction compensation in table drive system. IEEE/ASME Trans. Mechatron. 4(1), 3-8 (1999) https://doi.org/10.1109/3516.752078
- Wu, X., Lin, Z.: On immediate, delayed and anticipatory activation of anti-windup mechanism: static anti-windup case. IEEE Trans. Autom. Control. 57(3), 771-777 (2012) https://doi.org/10.1109/TAC.2011.2166319
- Niu, L., Xu, D., Yang, M., Gui, X., Liu, Z.: On-line inertia identification algorithm for pi parameters optimization in speed loop. IEEE Trans. Power Electron. 30(2), 849-859 (2015) https://doi.org/10.1109/TPEL.2014.2307061
- Iwasaki, M., Matsui, N.: Observer-based nonlinear friction compensation in servo drive system. Proc. AMC'96-MIE, 344-348 (1996)
- Yang, J., Chen, W.-H., Li, S., Guo, L., Yan, Y.: Disturbance/uncertainty estimation and attenuation techniques in PMSM drives-a survey. IEEE Trans. Ind. Electron. 64(4), 3273-3285 (2017) https://doi.org/10.1109/TIE.2016.2583412
- Lee, K.B., Yoo, J.Y., Song, J.H., Choy, I.: Improvement of low speed operation of electric machine with an inertia identification using ROELO. IEE Proc. Electr. Power Appl. 151(1), 116-120 (2004) https://doi.org/10.1049/ip-epa:20031009
- Tan, Y., Chang, J., Tan, H.: Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties. IEEE Trans. Ind. Electron. 50(5), 944-952 (2003) https://doi.org/10.1109/TIE.2003.817574
- Zaky, M.S., Metwaly, M.K.: A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers. IEEE Trans. Power Electron. 32(5), 3741-3753 (2017) https://doi.org/10.1109/TPEL.2016.2583660
- Li, N., Dianguo, X., Ming, Y., Xianguo, G., Zijian, L.: On-line inertia identification algorithm for PI parameters optimization in speed loop. IEEE Trans. Power Electron. 30(2), 849-859 (2015) https://doi.org/10.1109/TPEL.2014.2307061
- Schutte, F., Beineke, S., Rolfsmeier, A., Grotstollen, H.: Online identification of mechanical parameters using extended Kalman filters. IAS 97, 501-508 (1997)
- Kelly, R., Llamas, J., Campa, R.: A measurement procedure for viscous and coulomb friction. IEEE Trans. Instrum. Meas. 49(4), 857-861 (2000) https://doi.org/10.1109/19.863938
- Garrido, R., Concha, A.: Inertia and friction estimation of a velocity-controlled servo using position measurements. IEEE Trans. Ind. Electron. 61(9), 4759-4770 (2014) https://doi.org/10.1109/TIE.2013.2293692
- Kim, S.: Moment of inertia and friction torque coefficient identification in a servo drive system. IEEE Trans. Ind. Electron. 66(1), 60-70 (2019) https://doi.org/10.1109/tie.2018.2826456
- Anton, H., Busby, R. C.: Contemporary Linear Algebra. Chap. 7. Wiley-IEEE Press (2003)
- Ohmae, T., Matsuda, T., Kamiyama, K., Tachikawa, M.: A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Trans. Ind. Electron. 29(3), 207-211 (1982)
- Yoon, Y.-D., Jung, E., Yoo, A., Sul, S.-K.: Dual observers for the disturbance rejection of a motion control system. 2007 IEEE Ind. Appl. Annual Meeting, 256-261 (2007)
- HD HARMONIC DRIVE. https://www.harmonicdrive.net/products/gear-units/simplicity-gear-units/shg-2sh/shg-14-100-2sh#. Accessed 12 Aug 2020
- Johnson, C.T., Lorenz, R.D.: Experimental identification of friction and its compensation in precise, position controlled mechanisms. IEEE Trans. Ind. Appl. 28(6), 1392-1398 (1992) https://doi.org/10.1109/28.175293