DOI QR코드

DOI QR Code

Identification of mechanical parameters for position-controlled servo systems using sinusoidal commands

  • Yoo, Min-Sik (Department of Automotive Engineering, Hanyang University) ;
  • Choi, Seung-Cheol (Department of Automotive Engineering, Hanyang University) ;
  • Park, Sang-Woo (Department of Automotive Engineering, Hanyang University) ;
  • Yoon, Young-Doo (Department of Automotive Engineering, Hanyang University)
  • Received : 2020.06.09
  • Accepted : 2020.08.08
  • Published : 2020.11.20

Abstract

This paper proposes an identification method for mechanical parameters based on position control. To improve motion control performance, the moment of inertia and friction components must be considered. Based on mechanical equations, the proposed method estimates the moment of inertia, viscous friction coefficient, and Coulomb friction in the off-line state. Mechanical parameters are obtained from the integral values for the products of the torque, speed, and position using the 90° phase relationship between acceleration and velocity. Simulation and experimental results demonstrate the validity and accuracy of the proposed method. Since its implementation is simple, this method can be applied easily to industry.

Keywords

Acknowledgement

This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea under Grant 20193010025790.

References

  1. Li, X., Gao, W., Muto, H., Shimizu, Y., Ito, S., Dian, S.: A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precis. Eng. 37(3), 771-781 (2013) https://doi.org/10.1016/j.precisioneng.2013.03.005
  2. Blomdell, A., Dressler, I., Nilsson, K., Robertsson, A.: Flexible application development and high-performance motion control based on external sensing and reconfiguration of ABB industrial robot controllers. Proc. IEEE Int. Conf. Robotics and Automation, 62-66 (2010)
  3. Peshkin, M.A., Colgate, J.E., Wannasuphoprasit, W., Moore, C.A., Gillespie, R.B., Akella, P.: Cobot architecture. IEEE Trans. Robotics Autom. 17(4), 377-390 (2001) https://doi.org/10.1109/70.954751
  4. Zhang, Y., Xia, B., Yang, H.: Performance evaluation of an improved model predictive control with field oriented control as a benchmark. IET Electr. Power Appl. 11(5), 677-687 (2017) https://doi.org/10.1049/iet-epa.2015.0614
  5. Kim, J.-H., Choi, J.-W., Sul, S.-K.: High precision position control of linear permanent magnet synchronous motor for surface mount device placement system. Proc. Power Convers. Conf. Osaka 2002, 37-42 (2002)
  6. Katsura, S., Matsumoto, Y., Ohnishi, K.: Modeling of force sensing and validation of disturbance observer for force control. IECON'03, 291-296 (2003)
  7. Iwasaki, M., Shibata, T., Matsui, N.: Disturbance-observer-based nonlinear friction compensation in table drive system. IEEE/ASME Trans. Mechatron. 4(1), 3-8 (1999) https://doi.org/10.1109/3516.752078
  8. Wu, X., Lin, Z.: On immediate, delayed and anticipatory activation of anti-windup mechanism: static anti-windup case. IEEE Trans. Autom. Control. 57(3), 771-777 (2012) https://doi.org/10.1109/TAC.2011.2166319
  9. Niu, L., Xu, D., Yang, M., Gui, X., Liu, Z.: On-line inertia identification algorithm for pi parameters optimization in speed loop. IEEE Trans. Power Electron. 30(2), 849-859 (2015) https://doi.org/10.1109/TPEL.2014.2307061
  10. Iwasaki, M., Matsui, N.: Observer-based nonlinear friction compensation in servo drive system. Proc. AMC'96-MIE, 344-348 (1996)
  11. Yang, J., Chen, W.-H., Li, S., Guo, L., Yan, Y.: Disturbance/uncertainty estimation and attenuation techniques in PMSM drives-a survey. IEEE Trans. Ind. Electron. 64(4), 3273-3285 (2017) https://doi.org/10.1109/TIE.2016.2583412
  12. Lee, K.B., Yoo, J.Y., Song, J.H., Choy, I.: Improvement of low speed operation of electric machine with an inertia identification using ROELO. IEE Proc. Electr. Power Appl. 151(1), 116-120 (2004) https://doi.org/10.1049/ip-epa:20031009
  13. Tan, Y., Chang, J., Tan, H.: Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties. IEEE Trans. Ind. Electron. 50(5), 944-952 (2003) https://doi.org/10.1109/TIE.2003.817574
  14. Zaky, M.S., Metwaly, M.K.: A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers. IEEE Trans. Power Electron. 32(5), 3741-3753 (2017) https://doi.org/10.1109/TPEL.2016.2583660
  15. Li, N., Dianguo, X., Ming, Y., Xianguo, G., Zijian, L.: On-line inertia identification algorithm for PI parameters optimization in speed loop. IEEE Trans. Power Electron. 30(2), 849-859 (2015) https://doi.org/10.1109/TPEL.2014.2307061
  16. Schutte, F., Beineke, S., Rolfsmeier, A., Grotstollen, H.: Online identification of mechanical parameters using extended Kalman filters. IAS 97, 501-508 (1997)
  17. Kelly, R., Llamas, J., Campa, R.: A measurement procedure for viscous and coulomb friction. IEEE Trans. Instrum. Meas. 49(4), 857-861 (2000) https://doi.org/10.1109/19.863938
  18. Garrido, R., Concha, A.: Inertia and friction estimation of a velocity-controlled servo using position measurements. IEEE Trans. Ind. Electron. 61(9), 4759-4770 (2014) https://doi.org/10.1109/TIE.2013.2293692
  19. Kim, S.: Moment of inertia and friction torque coefficient identification in a servo drive system. IEEE Trans. Ind. Electron. 66(1), 60-70 (2019) https://doi.org/10.1109/tie.2018.2826456
  20. Anton, H., Busby, R. C.: Contemporary Linear Algebra. Chap. 7. Wiley-IEEE Press (2003)
  21. Ohmae, T., Matsuda, T., Kamiyama, K., Tachikawa, M.: A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Trans. Ind. Electron. 29(3), 207-211 (1982)
  22. Yoon, Y.-D., Jung, E., Yoo, A., Sul, S.-K.: Dual observers for the disturbance rejection of a motion control system. 2007 IEEE Ind. Appl. Annual Meeting, 256-261 (2007)
  23. HD HARMONIC DRIVE. https://www.harmonicdrive.net/products/gear-units/simplicity-gear-units/shg-2sh/shg-14-100-2sh#. Accessed 12 Aug 2020
  24. Johnson, C.T., Lorenz, R.D.: Experimental identification of friction and its compensation in precise, position controlled mechanisms. IEEE Trans. Ind. Appl. 28(6), 1392-1398 (1992) https://doi.org/10.1109/28.175293