DOI QR코드

DOI QR Code

Three-vector-based model predictive current control with disturbance feedforward compensation

  • Xu, Yanping (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Li, Hangke (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Ren, Jinglu (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Zhang, Yanping (Department of Electrical Engineering, Xi'an University of Technology)
  • Received : 2019.08.02
  • Accepted : 2019.11.26
  • Published : 2020.05.20

Abstract

Finite control set model predictive current control (FCS-MPCC) has attracted the attention of a large number of researchers due to its intuitive idea, fast dynamic response and control objective flexibility. However, FCS-MPCC has a high steady-state current ripple. Three-vector-based model predictive current control (TV-MPCC) is an effective method to improve steady-state performance. However, it results in high motor parameter dependency. In this paper, the effect of motor parameters mismatch in FCS-MPCC has been analyzed. The control performance of FCS-MPCC is impacted when the motor parameters are mismatched. Then based on the disturbance estimation technique, a disturbance feedforward compensation based generalized proportional integral observer is used to reduce the disturbances and improves the robustness performance of the system. Experimental results show that the proposed method effectively improve the robustness of the system.

Keywords

References

  1. Kommuri, S.K., Defoort, M., Karimi, H.R., Veluvolu, K.C.: A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron. 63(12), 7671-7681 (2016) https://doi.org/10.1109/TIE.2016.2590993
  2. Mendoza-Mondragon, F., Hernandez-Guzman, V.M., Rodriguez-Resendiz, J.: Robust speed control of permanent magnet synchronous motors using two-degrees-of-freedom control. IEEE Trans. Ind. Electron. 65(8), 6099-6108 (2018) https://doi.org/10.1109/tie.2017.2786203
  3. Amezquita-Brooks, L., Liceaga-Castro, J., Liceaga-Castro, E.: Speed and position controllers using indirect field-oriented control: a classical control approach. IEEE Trans. Ind. Electron. 61(4), 1928-1943 (2014) https://doi.org/10.1109/TIE.2013.2262750
  4. Wang, Z., Chen, J., Cheng, M., Chau, K.T.: Field-oriented control and direct torque control for paralleled VSIs fed PMSM drives with variable switching frequencies. IEEE Trans. Power Electron. 31(3), 2417-2428 (2016) https://doi.org/10.1109/TPEL.2015.2437893
  5. Wang, S., Li, C., Che, C., Xu, D.: Direct torque control for 2L-VSI PMSM using switching instant table. IEEE Trans. Ind. Electron. 65(12), 9410-9420 (2018) https://doi.org/10.1109/tie.2018.2815995
  6. He, L., Cheng, S., Du, Y., Harley, R.G., Habetler, T.G.: Stator temperature estimation of direct-torque-controlled induction machines via active flux or torque injection. IEEE Trans. Power Electron. 30(2), 888-899 (2015) https://doi.org/10.1109/TPEL.2014.2310902
  7. Ma, J., Song, W., Wang, X., Blaabjerg, F., Feng, X.: Low-complexity model predictive control of single-phase three-level rectifiers with unbalanced load. IEEE Trans. Power Electron. 33(10), 8936-8947 (2018) https://doi.org/10.1109/tpel.2017.2780160
  8. Nguyen, H.T., Jung, J.: Disturbance-rejection-based model predictive control: flexible-mode design with a modulator for three-phase inverters. IEEE Trans. Ind. Electron. 65(4), 2893-2903 (2018) https://doi.org/10.1109/TIE.2017.2758723
  9. Kakosimos, P., Abu-Rub, H.: Predictive speed control with short prediction horizon for permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 33(3), 2740-2750 (2018) https://doi.org/10.1109/TPEL.2017.2697971
  10. Chen, Z., Qiu, J., Jin, M.: Adaptive finite-control-set model predictive current control for IPMSM drives with inductance variation. IET Electr. Power Appl. 11(5), 874-884 (2017) https://doi.org/10.1049/iet-epa.2016.0861
  11. Zhou, Z., Xia, C., Yan, Y., Wang, Z., Shi, T.: Torque ripple minimization of predictive torque control for PMSM with extended control set. IEEE Trans. Ind. Electron. 64(9), 6930-6939 (2017) https://doi.org/10.1109/TIE.2017.2686320
  12. Nguyen, H.T., Jung, J.: Finite control set model predictive control to guarantee stability and robustness for surface-mounted PM synchronous motors. IEEE Trans. Ind. Electron. 65(11), 8510-8519 (2018) https://doi.org/10.1109/TIE.2018.2814006
  13. Vafaie, M.H., Mirzaeian Dehkordi, B.: Approach for classifying direct PCs applied to AC motor drives. IET Electr. Power Appl. 13(3), 385-401 (2019) https://doi.org/10.1049/iet-epa.2018.5291
  14. Bozorgi, A.M., Farasat, M., Jafarishiadeh, S.: Model predictive current control of surface-mounted permanent magnet synchronous motor with low torque and current ripple. IET Power Electron. 10(10), 1120-1128 (2017) https://doi.org/10.1049/iet-pel.2016.0850
  15. Zhang, Y., Yang, H.: Two-vector-based model predictive torque control without weighting factors for induction motor drives. IEEE Trans. Power Electron. 31(2), 1381-1390 (2016) https://doi.org/10.1109/TPEL.2015.2416207
  16. Li, H., Lin, M., Yin, M., Ai, J., Le, W.: Three-vector-based low-complexity model predictive direct power control strategy for PWM rectifier without voltage sensors. IEEE J. Emerg. Sel. Topics Power Electron. 7(1), 240-251 (2019) https://doi.org/10.1109/jestpe.2018.2871332
  17. Ren, J., Ye, Y., Xu, G., Zhao, Q., Zhu, M.: Uncertainty-and-disturbance-estimator-based current control scheme for PMSM drives with a simple parameter tuning algorithm. IEEE Trans. Power Electron. 32(7), 5712-5722 (2017) https://doi.org/10.1109/TPEL.2016.2607228
  18. Siami, M., Khaburi, D.A., Rodriguez, J.: Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch. IEEE Trans. Power Electron. 32(9), 7160-7168 (2017) https://doi.org/10.1109/TPEL.2016.2630274
  19. Zhang, X., Tian, G., Huang, Y., Lu, Z.: Current compensation based sliding mode observer for sensorless control and online parameter estimation of PMSM. In: 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, Hangzhou (2016)
  20. Yang, J., Chen, W., Li, S., Guo, L., Yan, Y.: Disturbance/uncertainty estimation and attenuation techniques in PMSM drives-a survey. IEEE Trans. Ind. Electron. 64(4), 3273-3285 (2017) https://doi.org/10.1109/TIE.2016.2583412
  21. Sariyildiz, E., Ohnishi, K.: Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans. Ind. Electron. 62(1), 414-422 (2015) https://doi.org/10.1109/TIE.2014.2327009
  22. Xu, B., Wang, D., Zhang, Y., Shi, Z.: DOB-based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Trans. Ind. Electron. 64(11), 8676-8685 (2017) https://doi.org/10.1109/TIE.2017.2703678
  23. Sayem, A.H.M., Cao, Z., Man, Z.: Model free ESO-based repetitive control for rejecting periodic and aperiodic disturbances. IEEE Trans. Ind. Electron. 64(4), 3433-3441 (2017) https://doi.org/10.1109/TIE.2016.2606086
  24. Pu, Z., Yuan, R., Yi, J., Tan, X.: A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans. Ind. Electron. 62(9), 5858-5869 (2015) https://doi.org/10.1109/TIE.2015.2448060
  25. Yang, J., Cui, H., Li, S., Zolotas, A.: Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Trans. Circuits Syst. I Reg. Papers 65(2), 832-841 (2018) https://doi.org/10.1109/TCSI.2017.2725386
  26. Wang, J., Wang, F., Zhang, Z., Li, S., Rodriguez, J.: Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems. IEEE Trans. Ind. Inform. 13(5), 2645-2656 (2017) https://doi.org/10.1109/TII.2017.2679283
  27. Zhang, W., Tomizuka, M., Wu, P., et al.: A double disturbance observer design for compensation of unknown time delay in a wireless motion control system. IEEE Trans. Control Syst. Technol. 26(2), 675-683 (2018) https://doi.org/10.1109/tcst.2017.2665967
  28. Yan, L., Dou, M., Hua, Z., Zhang, H., Yang, J.: Robustness improvement of FCS-MPTC for induction machine drives using disturbance feedforward compensation technique. IEEE Trans. Power Electron. 34(3), 2874-2886 (2019) https://doi.org/10.1109/tpel.2018.2842743
  29. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083-1095 (2016) https://doi.org/10.1109/TIE.2015.2478397
  30. Sira-Ramirez, H., Oliver-Salazar, M.A.: On the robust control of buck-converter DC-motor combinations. IEEE Trans. Power Electron. 28(8), 3912-3922 (2013) https://doi.org/10.1109/TPEL.2012.2227806
  31. Xu, Y., Wang, J., Zhang, B., Zhou, Q.: Three-vector-based model predictive current control for permanent magnet synchronous motor. Trans. China Electrotech. Soc. 33(5), 980-988 (2018)
  32. Khalil, H.: Nonlinear systems, 3rd edn, pp. 200-205. Prentice Hall, Upper Saddle River (2002)

Cited by

  1. Switch Open-Fault Detection for a Three-Phase Hybrid Active Neutral-Point-Clamped Rectifier vol.9, pp.9, 2020, https://doi.org/10.3390/electronics9091437
  2. Four-Level Hysteresis-Based DTC for Torque Capability Improvement of IPMSM Fed by Three-Level NPC Inverter vol.9, pp.10, 2020, https://doi.org/10.3390/electronics9101558
  3. A modified duty‐modulated predictive current control for permanent magnet synchronous motor drive vol.15, pp.1, 2020, https://doi.org/10.1049/elp2.12004