Acknowledgement
This research was supported by CONACYT, Mexico, under project 1982 of Catedras CONACYT.
References
- Dubey, S., Narotam-Sarvaiya, J., Seshadri, B.: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review. Energy Procedia 33, 311-321 (2013) https://doi.org/10.1016/j.egypro.2013.05.072
- Zhang, M., Chen, Z., Wei, L.: An immune frefly algorithm for tracking the maximum power point of PV array under partial shading conditions. Energies 12(16), 3083 (2019) https://doi.org/10.3390/en12163083
- Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439-449 (2007) https://doi.org/10.1109/TEC.2006.874230
- Gomes-de-Brito, M.A., Galotto, L., Poltronieri-Sampaio, L., de Azevedo-e-Melo, G., Canesin, C.A.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3), 1156-1167 (2013) https://doi.org/10.1109/TIE.2012.2198036
- Bendib, B., Belmili, H., Krim, F.: A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 45, 637-648 (2015) https://doi.org/10.1016/j.rser.2015.02.009
- Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M.: A fast current-based MPPT technique employing sliding mode control. IEEE Trans. Ind. Electron. 60(3), 1168-1178 (2013) https://doi.org/10.1109/TIE.2012.2190253
- Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963-973 (2005) https://doi.org/10.1109/TPEL.2005.850975
- Xiao, W., Dunford, W.G., Palmer, P.R., Capel, A.: Application of centered diferentiation and steepest descent to maximum power point tracking. IEEE Trans. Ind. Electron. 54(5), 2539-2549 (2007) https://doi.org/10.1109/TIE.2007.899922
- Baekhoej Kjaer, S., Pedersen, J.K., Blaabjerg, F.: A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292-1306 (2005) https://doi.org/10.1109/TIA.2005.853371
- Petrone, G., Spagnuolo, G., Vitelli, M.: An analog technique for distributed MPPT PV applications. IEEE Trans. Ind. Electron. 59(12), 4713-4722 (2012) https://doi.org/10.1109/TIE.2011.2177613
- Espinoza-Trejo, D.R., Barcenas-Barcenas, E., Campos-Delgado, D.U., De Angelo, C.H.: Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems. IEEE Trans. Ind. Electron. 62(6), 3499-3507 (2015) https://doi.org/10.1109/TIE.2014.2369456
- Tchoketch, G.F., Larbes, C., Ilinca, A., Obeidi, T., Tchoketch, S.: Study of the intelligent behaviour of a maximum photovoltaic energy tracking fuzzy controller. Energies 11(12), 3263 (2018) https://doi.org/10.3390/en11123263
- Gil-Antonio, L., Saldivar, B., Portillo-Rodriguez, O., AvilaVilchis, J.C., Martinez-Rodriguez, P.R.: Flatness-based control for the maximum power point tracking in a photovoltaic system. Energies 12(10), 1843 (2019) https://doi.org/10.3390/en12101843
- Ali, K., Khan, L., Khan, Q., Ulla, S., Ahmad, S., Mumtaz, S., Wahab, F., Naghmash, : Robust integral backstepping based nonlinear MPPT control for a PV system. Energies 12(16), 3180 (2019) https://doi.org/10.3390/en12163180
- Bani-Salim, M., Hayajneh, H.S., Mohammed, A., Ozcelik, S.: Robust direct adaptative controller design for photovoltaic maximum power point tracking application. Energies 12(16), 3182 (2019) https://doi.org/10.3390/en12163182
- Li, W., Xiang, X., Li, C., Li, W., He, X.: Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system. IEEE Trans. Power Electron. 28(1), 300-313 (2013) https://doi.org/10.1109/TPEL.2012.2199771
- Choi, H., Ciobotaru, M., Jang, M., Agelidis, V.G.: Performance of medium-voltage DC-bus PV system architecture utilizing high-gain DC-DC converter. IEEE Trans. Sustain. Energy 6(2), 464-473 (2015) https://doi.org/10.1109/TSTE.2014.2382690
- Wong, Y.S., Chen, J.F., Liu, K.B., Hsieh, Y.P.: A novel high step-up DC-DC converter with coupled inductor and switched clamp capacitor techniques for photovoltaic systems. Energies 10(3), 378 (2017) https://doi.org/10.3390/en10030378
- Frivaldsky, M., Hanko, B., Prazenica, M., Morgos, J.: High gain boost interleaved converters with coupled inductors and with demagnetizing circuits. Energies 11(1), 130 (2018) https://doi.org/10.3390/en11010130
- Altin, N., Ozturk, E.: Maximum power point tracking quadratic boost converter for photovoltaic systems. In: IEEE Electronics, Computers and Artifcial Intelligence International Conference, pp 35-38 (2016)
- Ozdemir, S., Altin, N., Sefa, I.: Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter. Int. J. Hydrog. Energy 42(28), 17748-17759 (2017) https://doi.org/10.1016/j.ijhydene.2017.02.191
- Yuang-Shung, L., Tzu-Han, C., Ling-Chia, Y., Hsin-Wei, H.: Quadratic high gain boost converter for grid-tie PV system application. In: 1st International Future Energy Electronics Conference, pp 382-387 (2013)
- Amir, A., Seng-Che, H., Elkhateb, A., Abd-Rahim, N.: Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems. Renew. Energy 136, 1147-1163 (2019) https://doi.org/10.1016/j.renene.2018.09.089
- Boroyevich, D., Cvetkovic, I., Dong, D., Burgos, R., Wang, F., Lee, F.: Future electronic power distribution systems - a contemplative view. In:12th International Conference on Optimization of Electrical and Electronic Equipment, pp 1369-1380 (2010)
- Ahmadi, R., Ferdowsi, M.: Improving the performance of a line regulating converter in a converter-dominated dc microgrid system. IEEE Trans. Smart Grid 5(5), 2553-2563 (2014) https://doi.org/10.1109/TSG.2014.2319267
- Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198-1208 (2009) https://doi.org/10.1109/TPEL.2009.2013862
- Loera-Palomo, R., Morales-Saldana, J.A.: Family of quadratic step-up dc-dc converters based on noncascading structures. IET Power Electron. 8(5), 793-801 (2015) https://doi.org/10.1049/iet-pel.2013.0879
- Ismail, E.H., Al-Safar, M.A., Sabzali, A.J., Fardoun, A.A.: A family of single-switch PWM converters with high step-up convertion ratio. IEEE Trans. Circuits Syst. 55(4), 1159-1171 (2008)
- Carbajal-Gutierrez, E.E., Morales-Saldana, J.A., Leyva-Ramos, J.: Modeling of a single-switch quadratic buck converter. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1451-1457 (2005)
- Loera-Palomo, R., Morales-Saldana, J.A., Leyva-Ramos, J.: Signal fow graphs for modelling of switching converters with reduced redundant power processing. IET Power Electron. 5(7), 1008-1016 (2012) https://doi.org/10.1049/iet-pel.2012.0038
- Viinamaki, J., Jokipii, J., Messo, T., Suntio, T., Sitbon, M., Kuperman, A.: Comprehensive dynamic analysis of photovoltaic generator interfacing dc-dc boost power stage. IET Renew. Power Gener. 9(4), 306-314 (2015) https://doi.org/10.1049/iet-rpg.2014.0149
- Puukko, J., Nousiainen, L., Maki, A., Messo, T., Huusari, J., Suntio, T.: Photovoltaic generator as an input source for power electronic converters. In: 15th International Power Electronics and Motion Control Conference, pp 1-8 (2012)
Cited by
- Noncascading Quadratic Buck-Boost Converter for Photovoltaic Applications vol.12, pp.8, 2021, https://doi.org/10.3390/mi12080984
- Compound control strategy for maximum power point tracking with flexible step-up converters for thin film photovoltaic module applications vol.21, pp.9, 2020, https://doi.org/10.1007/s43236-021-00269-x