Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant No. 61601411), the Science and Technology Project of Henan Province (Grant Nos. 192102210243, 182102210607 and 192102210108), the Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry (Grant No. 2015BSJJ008) and the Foundation for Young Key Teachers of Zhengzhou University of Light Industry.
References
- Tatlas, N.A., Floros, A., Hatziantoniou, P., Mourjopoulos, J.N.: Towards the all-digital audio/acoustic chain: challenges and solutions. Proc. the 23rd Audio Engineering Society Conference on Signal Processing in Audio Recording and Reproduction, pp. 219-233 (2003)
- Ge, T., He, H., Guo, L., Joseph, C.: A direct battery hookup filterless PWM class D amplifier with > 100 dB PSRR for 100 Hz to 1 kHz, 0.005% THD + N and 16 ㎶ noise. IEEE Trans. Power Electron. 35(1), 789-799 (2020) https://doi.org/10.1109/tpel.2019.2915542
- Yu, Z., Zhang, E., Chen, X., Bai, G., Xu, J., Wang, X.: Spectral analysis of UPWM signals for filterless digital class D power amplifiers. Circuits Syst. Signal Process. 39(4), 2094-2117 (2020) https://doi.org/10.1007/s00034-019-01250-7
- Pracny, P., Jorgensen, I.H., Bruun, E.: System-level power optimization of digital audio back end for hearing aids. Circuits Syst. Signal Process. 36(6), 2441-2458 (2017) https://doi.org/10.1007/s00034-016-0419-z
- Yu, Z., Wang, F., Fan, Y.: A power supply error correction method for single-ended digital audio class D amplifiers. Int. J. Electron. 103(12), 2110-2124 (2016) https://doi.org/10.1080/00207217.2016.1178343
- Kulka, Z.: Application of pulse modulation techniques for class-D audio power amplifer. Arch. Acoust. 32(3), 683-706 (2007)
- Zheng, H., Zhu, Z., Ma, R.: A 0.02% THD and 80 dB PSRR filterless class D amplifer with direct lithium battery hookup in mobile application. J. Semicond. 38(7), 60-67 (2017)
- Chien, S.H., Chen, Y.W., Kuo, T.H.: A 0.96 mA quiescent current, 0.0032% THD + N, 1.45 W class-D audio amplifer with area-efficient PWM-residual-aliasing reduction. Proc. the 2018 IEEE International Solid-State Circuits Conference, pp. 60-62 (2018)
- Ming, X., Chen, Z., Zhou, Z.K., Zhang, B.: An advanced spread spectrum architecture using pseudorandom modulation to improve EMI in class D amplifer. IEEE Trans. Power Electron. 26(2), 638-646 (2011) https://doi.org/10.1109/TPEL.2010.2063440
- Tse, K.K., Chung, H.S.H., Ron Hui, S.Y., So, H.C.: A comparative study of carrier-frequency modulation techniques for conducted EMI suppression in PWM converters. IEEE Trans. Industr. Electron. 49(3), 618-627 (2002) https://doi.org/10.1109/TIE.2002.1005389
- Tsakalis, K., Vlassopoulos, N., Lentaris, G., Reisis, D.: A controltheoretic approach for efficient design of filters in DAC and digital audio amplifiers. Circuits Syst. signal Process. 30(2), 421-438 (2011) https://doi.org/10.1007/s00034-010-9231-3
- Gamoudi, R., Chariag, D.E., Sbita, L.: A review of spread-spectrum-based PWM techniques-a novel fast digital implementation. IEEE Trans. Power Electron. 33(12), 10292-10307 (2018) https://doi.org/10.1109/tpel.2018.2808038
- Yu, Z., Fan, Y., Shi, L., Lv, G.: A pseudo-natural sampling algorithm for low-cost low-distortion asymmetric double-edge PWM modulators. Circuits Syst. Signal Process. 34(3), 831-849 (2015) https://doi.org/10.1007/s00034-014-9877-3
- Pickholtz, R., Schilling, D., Milstein, L.: Theory of spread-spectrum communications-a tutorial. IEEE Trans. Commun. 30(5), 855-884 (1982) https://doi.org/10.1109/tcom.1982.1095533
- Wang, R., Lin, Z., Du, J., Wu, J., He, X.: Direct sequence spread spectrum-based PWM strategy for harmonic reduction and communication. IEEE Trans. Power Electron. 32(6), 4455-4465 (2017) https://doi.org/10.1109/TPEL.2016.2597005
- Boudouda, A., Boudjerda, N., Aibeche, A., Bouzida, A.: Dual randomized pulse width modulation technique for buck converter fed by photovoltaic source. Rev. Roum. Sci. Techn.-Electrotechn. et Energ. 63(3), 289-294 (2018)
- Lee, K., Shen, G., Yao, W., Lu, Z.: Performance characterization of random pulse width modulation algorithms in industrial and commercial adjustable-speed drives. IEEE Trans. Indust. Appl. 53(2), 1078-1087 (2017) https://doi.org/10.1109/TIA.2016.2616407
- Mathe, L., Lungeanu, F., Sera, D., Rasmussen, P.O., Pedersen, J.K.: Spread spectrum modulation by using asymmetric-carrier random PWM. IEEE Trans. Industr. Electron. 59(10), 3710-3718 (2012) https://doi.org/10.1109/TIE.2011.2179272
- Adrian, V., Keer, C., Gwee, B.H., Chang, J.S.: A randomized modulation scheme for filterless digital class D audio amplifiers. Proc. the 2014 IEEE International Symposium on Circuits and Systems, pp. 774-777 (2014)
- Karaca, T., Auer, M.: Digital pulse-width modulator with spreadspectrum emission reduction. Elektrotech. Inftech. 135(1), 48-53 (2018) https://doi.org/10.1007/s00502-017-0577-0
- Chen, X., Zhang, C., Yu, Z., Qu, H., Zhang, E.: A spread spectrum modulation method based on dual-clock for filterless digital class-D audio amplifiers. Proc. the 2018 13th IEEE Conference on Industrial Electronics and Applications, pp. 1992-1995 (2018)
- Goldberg, J.M., Sandler, M.B.: New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifer. IEEE Proc. Circuits Devices Syst. 141(4), 315-324 (1994) https://doi.org/10.1049/ip-cds:19941102
- Pascual, C., Roeckner, B.: Computationally efficient conversion from pulse-code modulation to naturally sampled pulse-width modulation. Proc. the 109th Audio Engineering Society Convention, preprint p. 5198 (2000)
- Johnson, S., Zane, R.: Custom spectral shaping for EMI reduction in high-frequency inverters and ballasts. IEEE Trans. Power Electron. 20(6), 1499-1505 (2005) https://doi.org/10.1109/TPEL.2005.857565
- Davari, P., Hoene, E., Zare, F., Blaabjerg, F.: Improving 9-150 kHz EMI performance of single-phase PFC rectifier. Proc. the 10th International Conference on Integrated Power Electronics Systems, pp. 512-517 (2018)