DOI QR코드

DOI QR Code

Research on LADRC strategy of PMSM for road-sensing simulation based on differential evolution algorithm

  • Zhang, Hui (School of Electrical Engineering, Xi'an University of Technology) ;
  • Wang, Yuyuan (School of Electrical Engineering, Xi'an University of Technology) ;
  • Zhang, Guowang (State Key Laboratory of Automotive Safety and Energy, Tsinghua University) ;
  • Tang, Conghui (School of Electrical Engineering, Xi'an University of Technology)
  • Received : 2020.01.12
  • Accepted : 2020.04.10
  • Published : 2020.07.20

Abstract

A linear active disturbance rejection control (LADRC) strategy for permanent magnet synchronous motor (PMSM) for road-sensing based on the differential evolution (DE) algorithm is proposed in this paper, called DE-LADRC, to obtain the better dynamic and steady-state responses of the road-sensing simulation in electric vehicle (EV) steering-by-wire (SBW) systems. Since the novel control method ignores the time delay modules in digital motor control, the controlled object is regarded as a first-order inertial link to design a first-order LADRC controller. Then aiming to solve the problem where the values of the controller parameters are changed and difficult to tune due to ignoring the time delay modules in the first-order LADRC controller, the differential evolution (DE) algorithm is designed to find the optimal controller parameters by self-tuning. Experiment results indicate the effectiveness and convergence of the DE-LADRC, as well as the correctness of the road-sensing planning. In addition, the DE-LADRC can provide the smoother feel and real-time road-sensing for driver due to experiment of a Hardware in the Loop (HIL) platform under convergent iteration.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (51877175); Key Research Program of Shaanxi Province (2017ZDXMGY-003); and the Nature Fund Project of Shaanxi Province (2017JM5100).

References

  1. Kommuri, S.K., Defoort, M., Karimi, H.R., Veluvolu, K.C.: A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron. 63(12), 7671-7681 (2016) https://doi.org/10.1109/TIE.2016.2590993
  2. Luo, Y., Liu, C.: Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase PMSM motor. IEEE Trans. Power Electron. 34(7), 6960-6972 (2019) https://doi.org/10.1109/tpel.2018.2874893
  3. Zhang, Y., Xu, D., Liu, J., Gao, S., Xu, W.: Performance improvement of model-predictive current control of permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 53(4), 3683-3695 (2017) https://doi.org/10.1109/TIA.2017.2690998
  4. Luo, Y., Liu, C.: A simplified model predictive control for a dual three-phase PMSM with reduced harmonic currents. IEEE Trans. Ind. Electron. 65(11), 9079-9089 (2018) https://doi.org/10.1109/TIE.2018.2814013
  5. Xia, C., Yan, Y., Song, P., Shi, T.: Voltage disturbance rejection for matrix converter-based PMSM drive system using internal model control. IEEE Trans. Ind. Electron. 59(1), 361-372 (2012) https://doi.org/10.1109/TIE.2011.2134058
  6. Sun, X., Shi, Z., Chen, L., Yang, Z.: Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method. IEEE Trans Energy Convers. 31(4), 1539-1548 (2016) https://doi.org/10.1109/TEC.2016.2591925
  7. Mohamed, Y., A., I., El-Saadany, E., F.: A Current Control Scheme with an Adaptive Internal Model for Torque Ripple Minimization and Robust Current Regulation in PMSM Drive Systems. IEEE Trans. Energy Convers., 23(1), 92-100 (2008) https://doi.org/10.1109/TEC.2007.914352
  8. Jiang, Y., Xu, W., Mu, C., Liu, Y.: Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans Veh. Technol. 67(1), 251-263 (2018) https://doi.org/10.1109/tvt.2017.2752778
  9. Liu, X., Yu, H., Yu, J., Zhao, L.: Combined speed and current terminal sliding mode control with nonlinear disturbance observer for PMSM drive. IEEE Access. 6, 29594-29601 (2018) https://doi.org/10.1109/access.2018.2840521
  10. Liu, J., Li, H., Deng, Y.: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control. IEEE Trans. Power Electron. 33(4), 3655-3671 (2018) https://doi.org/10.1109/tpel.2017.2711098
  11. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900-906 (2009) https://doi.org/10.1109/TIE.2008.2011621
  12. Gao, Z., Q.: Scaling and bandwidth-parameterization based controller tuning. Proc. American Control Conference, 989-4996 (2003)
  13. Teng, Q., Li, G., F., Zhu, J., Guo, Y., Li, S.: ADRC-based model predictive current control for PMSMs fed by three-phase four-switch inverters. Power Electronics & Motion Control Conference (IPEMC-ECCE Asia), 2724-2731 (2016)
  14. Ma, X.L., Guo, Y.F., Chen, L.: Active disturbance rejection control for electric power steering system with assist motor variable mode. J. Franklin I. 355(3), 1139-1155 (2018) https://doi.org/10.1016/j.jfranklin.2017.12.024
  15. Zhang, D., Yao, X., Wu, Q., Song, Z.: ADRC based control for a class of input time delay systems. J. Syst. Eng. Electron. 28(6), 1210-1220 (2017) https://doi.org/10.21629/jsee.2017.06.19
  16. Li, S., Li, J.: Output predictor-based active disturbance rejection control for a wind energy conversion system with PMSG. IEEE Access. 5, 5205-5214 (2017) https://doi.org/10.1109/ACCESS.2017.2681697
  17. Fu, C., Tan, W.: Decentralised load frequency control for power systems with communication delays via active disturbance rejection. IET Gener. Transm. Distrib. 12(6), 1397-1403 (2018) https://doi.org/10.1049/iet-gtd.2017.0852
  18. Yu, Y.N., Yang, R.F., Yan, J.C., Wu, J., Wu, L.Q., Xu, D.G.: Nonlinear active disturbance rejection control of static var generator with cascaded unit considering time-delay factor. High Volt. Eng. 43(12), 3950-3957 (2017)
  19. Xia, Y., Shi, P., Liu, G.P., Rees, D., Han, J.Q.: Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory Appl. 1(1), 75-81 (2007) https://doi.org/10.1049/iet-cta:20050138
  20. Hanifah, R.A., Toha, S.F., Ahmad, S., Hassan, M.K.: Swarm-intelligence tuned current reduction for power-assisted steering control in electric vehicles. IEEE Trans. Ind. Electron. 65(9), 7202-7210 (2018) https://doi.org/10.1109/tie.2017.2784344
  21. Nakata, T., Sanada, M., Morimoto, S., Inoue, Y.: Automatic design of IPMSMs using a genetic algorithm combined with the coarse-mesh FEM for enlarging the high-efficiency operation area. IEEE Trans. Ind. Electron. 64(12), 9721-9728 (2017) https://doi.org/10.1109/TIE.2017.2714133
  22. Yin, Z.G., Gong, L., Du, C., Liu, J., Zhong, Y.R.: Sliding mode control for servo motors based on the differential evolution algorithm. J. Power Electron. 18(1), 92-102 (2018) https://doi.org/10.6113/JPE.2018.18.1.92
  23. Zhao, L.F., Cong, G.H., Shao, W.B., Chen, W.W.: Study on steering torque characteristic for steer-by-wire vehicles. J. Mech. Eng. 54(24), 138-146 (2018) https://doi.org/10.3901/jme.2018.24.138
  24. Wang, L.J., Li, Q., Tong, C.N., Yin, Y.X.: Overview of active rejection control for system with time-delay. Control Theory Appl. 30(12), 1521-1533 (2013) https://doi.org/10.7641/CTA.2013.31058
  25. Pan, Z., Wu, J., Gao, Z., Gao, J.: Adaptive differential evolution by adjusting subcomponent crossover rate for high-dimensional waveform inversion. IEEE Geosci. Remote Sens. Lett. 12(6), 1327-1331 (2015) https://doi.org/10.1109/LGRS.2015.2398876

Cited by

  1. Modified Linear Active Disturbance Rejection Control for Uncertain Robot Manipulator Trajectory Tracking vol.2021, 2021, https://doi.org/10.1155/2021/8892032