DOI QR코드

DOI QR Code

Improved Bitcoin Network Neighbors Connection Algorithm to Reduce Block Propagation Time

블록 전파 시간 단축을 위한 비트코인 네트워크 이웃 연결 알고리즘 개선

  • Bang, Jiwon (Kangwon National University Department of Computer Science) ;
  • Choi, Mi-Jung (Kangwon National University Department of Computer Science)
  • Received : 2020.07.17
  • Accepted : 2020.08.16
  • Published : 2020.08.31

Abstract

Bitcoin is an electronic money that does not rely on centralized institutions such as banks and financial institutions, unlike the world's paper currencies such as dollar, won, euro and yen. In Bitcoin network, a block with transaction details is generated by mining, and the message that the block has been created is broadcast to all participating nodes in a broadcasting method to secure reliability through verification. Likewise, the mining and block propagation methods in the Bitcoin network are greatly affected by the performance of the P2P network. For example, in the case of mining, the node receiving the reward for mining varies depending on whether the block is first mined in the network and the proof of mining is propagated faster. In this paper, we applied local characteristics and Round-to-Trip(RTT) measurement to solve the problems of the existing neighbor connection method and block propagation method performed in Bitcoin network. An algorithm to improve block propagation speed is presented. Through experiments, we compare the performance of the improved algorithm with the existing algorithm to verify that the overall block propagation time is reduced.

비트코인은 일반적으로 사용하고 있는 달러, 원화, 유로, 엔화 등 세계적인 종이 화폐와 달리 은행과 금융기관 등과 같은 중앙 집중 기관에 의존하지 않는 암호화폐이다. 비트코인 네트워크에서는 채굴(mining) 작업으로 거래 내역이 담긴 블록을 생성하고, 블록이 생성되었다는 메시지를 모든 참여 노드에게 브로드캐스팅(broadcasting) 방식으로 전파하여 검증을 통해 신뢰성을 확보한다. 이와 같이 비트코인 네트워크에서 채굴과 블록 전파는 P2P 네트워크의 성능에 크게 영향을 받는다. 채굴의 경우 네트워크 내에서 먼저 채굴을 진행하고, 더 빠르게 채굴에 대한 증명을 전파하는지에 따라 보상을 받는 노드가 달라진다. 본 논문에서는 비트코인 네트워크에서 수행되는 기존의 이웃 연결 방식과 블록 전파 방식에 대한 문제점을 지역적인 특성과 RTT(Round-To-Trip) 값 측정을 적용하여 블록 전파 속도향상을 위한 개선 알고리즘을 제시한다. 실험을 통해 개선 알고리즘과 기존 알고리즘의 성능 비교하여 전반적인 블록 전파 시간이 감소한 것을 검증한다.

Keywords

Acknowledgement

본 연구는 2018년도 정부(과학기술정보통신부)의 재원으로 정보통신기술진흥센터의 지원을 받아 수행된 연구임 (No. 2018-0-00539, 블록체인의 트랜잭션 모니터링 및 분석 기술개발)

References

  1. S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System(2009), Retrieved Jun. 14, 2020, from http://www.bitcoin.org/bitcoin.pdf.
  2. S. Nakamoto, Bitcoin Core(2009), Retrieved Mar. 13, 2020, from http://bitcoin.org/en/download/.
  3. C. Decker, C. and R. Wattenhofer, "Information propagation in the bitcoin network," In Proc. of IEEE P2P 2013, IEEE, pp. 1-10, Trento, Italy, Sep. 2013.
  4. W. Bi, Y. Huawei and Z. Maolin, "An Accelerated Method for Message Propagation in Blockchain Networks," arXiv preprint arXiv:1809.00455, Sep. 2018.
  5. R. Banno and S. Kazuyuki, "Simulating a blockchain network with SimBlock," In Proc. of International Conference on Blockchain and Cryptocurrency, IEEE, pp. 3-4, Seoul, Korea, May 2019.
  6. Y. Aoki, "SimBlock: A blockchain network simulator," In Proc. of IEEE INFOCOM 2019 Conference on Computer Communications Workshops, IEEE, pp. 325-329, May, 2019.
  7. G. Wood, "Ethereum: A secure decentralized generalized transaction ledger," Ethereum project yellow paper 151, pp. 1-32, 2014.
  8. E. Androulaki, et al., "Hyperledger fabric: a distributed operating system for permissioned blockchains," In Proc. of the Thirteenth EuroSys Conference, ACM, pp. 1-15, Apr. 2018.
  9. Z. Zheng, et al., "An overview of blockchain technology: Architecture, consensus, and future trends," In Proc. of IEEE International Big Data Congress, IEEE, pp. 557-564, Honolulu, USA, Jun. 2017.
  10. M. Pilkington, "Blockchain technology: principles and applications," Research handbook on digital transformations Edward Elgar Publishing, 2016.
  11. H. Gilbert, and H. Handschuh, "Security analysis of SHA-256 and sisters," In Proc. of International workshop on selected areas in cryptography, Springer, pp. 175-193, Berlin, Heidelberg, Aug. 2003.
  12. J. Park, "Design Scheme and Configuration of Private Blockchains Based Multiple Security Authentication Methods For Internet of Medical Things(IoMT) Application," The Journal of Korean Institute of Communications and Information Sciences, Vol. 44, No. 12, pp. 2315-2322, Dec. 2019. https://doi.org/10.7840/kics.2019.44.12.2315
  13. S. Lee, Y. Kim, H. Kim, "Trends and Analysis of Blockchain Privacy Protocols," The Journal of Korean Institute of Communications and Information Sciences, Vol. 44, No. 12, pp. 2252-2259, Dec. 2019. https://doi.org/10.7840/kics.2019.44.12.2252
  14. C. Jang, O. Yi, "Blockchain Network Configuration for Smart Contract in EV Charging Infrastructure," The Journal of Korean Institute of Communications and Information Sciences, Vol. 44, No. 8, pp. 1597-1604, Aug. 2019. https://doi.org/10.7840/kics.2019.44.8.1597
  15. A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, "Hawk: The blockchain model of cryptography and privacy-preserving smart contracts," In Proc. of IEEE Symposium on security and privacy, IEEE, pp. 839-858, San Jose, USA, Aug. 2016.
  16. A. Yeow, Bitnodes(2018), Retrieved Mar. 16, 2020, from https://bitnodes.earn.com/.
  17. A. Gervais, et al., "On the security and performance of proof of work blockchains," In Proc. of the SIGSAC conference on computer and communications security, ACM, Oct. 2016.
  18. G. F. Riley, and R. H. Thomas, "The ns-3 network simulator," Modeling and tools for network simulation, Springer, pp. 15-34, Berlin, Heidelberg, June 2010.