DOI QR코드

DOI QR Code

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu (National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University) ;
  • Hao, Tingting (National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University) ;
  • Zhou, Jingwen (National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University)
  • Received : 2020.08.02
  • Accepted : 2020.08.19
  • Published : 2020.10.28

Abstract

Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.

Keywords

References

  1. Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM. 2015. Naringenin and atherosclerosis: a review of literature. Curr. Pharm. Biotechnol. 16: 245-251. https://doi.org/10.2174/1389201015666141202110216
  2. Liu HL, Jiang WB, Xie MX. 2010. Flavonoids: recent advances as anticancer drugs. Recent Pat. Anticancer Drug Discov. 5: 152-164.
  3. Skarpalezos D, Detsi A. 2019. Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl. Sci. 9: 11749-11752.
  4. Sharma K, Mahato N, Lee YR. 2019. Extraction, characterization and biological activity of citrus flavonoids. Rev. Chem. Eng. 35: 265-284. https://doi.org/10.1515/revce-2017-0027
  5. Guo P, Yan W, Han Q, Wang C, Zhang Z. 2015. Simultaneous quantification of 25 active constituents in the total flavonoids extract from Herba Desmodii Styracifolii by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 38: 1156-1163. https://doi.org/10.1002/jssc.201401360
  6. Wu JJ, Du GC, Zhou JW, Chen J. 2014. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J. Biotechnol. 188: 72-80. https://doi.org/10.1016/j.jbiotec.2014.08.016
  7. Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. 2019. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol. Bioeng. 116: 1392-1404. https://doi.org/10.1002/bit.26941
  8. Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. 2019. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals 12: 11. https://doi.org/10.3390/ph12010011
  9. Wu JJ, Yu O, Du GC, Zhou JW, Chen J. 2014. Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)- naringenin production from L-tyrosine in Escherichia coli. Appl. Environ. Microbiol. 80: 7283-7292. https://doi.org/10.1128/AEM.02411-14
  10. Wu JJ, Du GC, Chen J, Zhou JW. 2015. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci. Rep-UK 5: 13477. https://doi.org/10.1038/srep13477
  11. Lyu X, Ng KR, Lee JL, Mark R, Chen WN. 2017. Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of Saccharomyces cerevisiae. J. Agr. Food Chem. 65: 6638-6646. https://doi.org/10.1021/acs.jafc.7b02507
  12. Gao S, Lyu Y, Zeng W, Du G, Zhou J, Chen J. 2020. Efficient biosynthesis of (2S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. J. Agric. Food Chem. 68: 1015-1021. https://doi.org/10.1021/acs.jafc.9b05218
  13. Gao S, Zhou H, Zhou J, Chen J. 2020. Promoter library based pathway optimization for efficient (2S)-naringenin production from pcoumaric acid in Saccharomyces cerevisiae. J. Agr. Food Chem. 68: 6884-6891. https://doi.org/10.1021/acs.jafc.0c01130
  14. Wu JJ, Zhou TT, Du GC, Zhou JW, Chen J. 2014. Modular optimization of heterologous pathways for de novo synthesis of (2S)- naringenin in Escherichia coli. PLoS One 9: e101492. https://doi.org/10.1371/journal.pone.0101492
  15. Raman S, Rogers JK, Taylor ND, Church GM. 2014. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111: 17803-17808. https://doi.org/10.1073/pnas.1409523111
  16. Lv Y, Marsafari M, Koffas M, Zhou J, Xu P. 2019. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synth. Biol. 8: 2514-2523. https://doi.org/10.1021/acssynbio.9b00193
  17. Wei W, Zhang P, Shang Y, Zhou Y, Ye B-C. 2020. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Bioresour. Technol. 314: 123726. https://doi.org/10.1016/j.biortech.2020.123726
  18. Palmer CM, Miller KK, Nguyen A, Alper HS. 2020. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a ${\beta}$-oxidation mediated strategy. Metab. Eng. 57: 174-181. https://doi.org/10.1016/j.ymben.2019.11.006
  19. Zhou S, Yuan S-F, Nair PH, Alper HS, Deng Y, Zhou J. 2020. Development of a growth coupled dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin synthesis in E. coli. BioRxiv 7: 192633.
  20. Neidhardt FC, Bloch PL, Smith DF. 1974. Culture medium for enterobacteria. J. Bacteriol. 119: 736-747. https://doi.org/10.1128/JB.119.3.736-747.1974
  21. Pandey RP, Parajuli P, Koffas MAG, Sohng JK. 2016. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34: 634-662. https://doi.org/10.1016/j.biotechadv.2016.02.012
  22. Zhou S, Hao T, Xu S, Deng Y. 2020. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol. Adv. 43: 107575. https://doi.org/10.1016/j.biotechadv.2020.107575
  23. Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MAG. 2011. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13: 578-587. https://doi.org/10.1016/j.ymben.2011.06.008
  24. Heil CS, Wehrheim SS, Paithankar KS, Grininger M. 2019. Fatty acid biosynthesis: chain-length regulation and control. ChemBioChem. 20: 2298-2321. https://doi.org/10.1002/cbic.201800809
  25. Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, et al. 2016. On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55: 1681-1688. https://doi.org/10.1021/acs.biochem.5b01094
  26. Zhou S, Ding R, Chen J, Du G, Li HZ, Zhou J. 2017. Obtaining a panel of cascade promoter-5'-UTR complexes in Escherichia coli. ACS Synth. Biol. 6: 1065-1075. https://doi.org/10.1021/acssynbio.7b00006
  27. Fordjour E, Adipah FK, Zhou S, Du G, Zhou J. 2019. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose. Microb. Cell Fact. 18: 74. https://doi.org/10.1186/s12934-019-1122-0
  28. Deutscher J, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, et al. 2014. The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78: 231-256. https://doi.org/10.1128/MMBR.00001-14
  29. Gu Y, Ma J, Zhu Y, Ding X, Xu P. 2020. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals. ACS Synth. Biol. 9: 20936.
  30. Lyu X, Zhao G, Ng KR, Mark R, Chen WN. 2019. Metabolic engineering of Saccharomyces cerevisiae for de novo production of Kaempferol. J. Agric. Food Chem. 67: 5596-5606. https://doi.org/10.1021/acs.jafc.9b01329
  31. Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, et al. 2016. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35: 55-63. https://doi.org/10.1016/j.ymben.2016.01.006
  32. Zhang W, Liu H, Li X, Liu D, Dong XT, Li FF, et al. 2017. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng. Life Sci. 17: 1021-1029. https://doi.org/10.1002/elsc.201700039
  33. Ganesan V, Li Z, Wang X, Zhang H. 2017. Heterologous biosynthesis of natural product naringenin by co-culture engineering. Synth. Syst. Biotechnol. 2: 236-242. https://doi.org/10.1016/j.synbio.2017.08.003
  34. Lv Y, Gu Y, Xu J, Zhou J, Xu P. 2020. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metab. Eng. 61: 79-88. https://doi.org/10.1016/j.ymben.2020.05.005
  35. Dinh CV, Chen X, Prather KLJ. 2020. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system. ACS Synth. Biol. 9: 590-597. https://doi.org/10.1021/acssynbio.9b00451
  36. Dinh CV, Prather KL. 2019. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proc. Natl. Acad. Sci. USA 116: 25562-25568. https://doi.org/10.1073/pnas.1911144116
  37. Siedler S, Stahlhut SG, Malla S, Maury J, Neves AR. 2014. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab. Eng. 21: 2-8. https://doi.org/10.1016/j.ymben.2013.10.011
  38. Siedler S, Khatri NK, Zsohar A, Kjaerbolling I, Vogt M, Hammar P, et al. 2017. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6: 1860-1869. https://doi.org/10.1021/acssynbio.7b00009

Cited by

  1. Multi-Therapeutic Potential of Naringenin (4′,5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms vol.9, pp.12, 2020, https://doi.org/10.3390/plants9121784
  2. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2S)-Naringenin in Saccharomyces cerevisiae vol.10, pp.5, 2020, https://doi.org/10.1021/acssynbio.1c00002
  3. Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review vol.26, pp.15, 2020, https://doi.org/10.3390/molecules26154522
  4. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli vol.67, 2020, https://doi.org/10.1016/j.ymben.2021.05.007
  5. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms vol.41, pp.8, 2020, https://doi.org/10.1080/07388551.2021.1922350