DOI QR코드

DOI QR Code

Internal Components Arrangement of MR Damper Landing Gear for Cavitation Prevention

캐비테이션 방지를 위한 MR 댐퍼형 착륙장치의 내부 형상 배치에 대한 연구

  • Joe, Bang-Hyun (Dept. Of Aerospace of Mechanical Engineering at Korea Aerospace University) ;
  • Jang, Dae-Sung (Dept. Of Aerospace of Mechanical Engineering at Korea Aerospace University) ;
  • Hwang, Jai-Hyuk (Dept. Of Aerospace of Mechanical Engineering at Korea Aerospace University)
  • 조방현 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장대성 (한국항공대학교 항공우주 및 기계공학부) ;
  • 황재혁 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2020.05.18
  • Accepted : 2020.09.01
  • Published : 2020.10.31

Abstract

The landing gear of an aircraft is a device that absorbs and dissipates shock energy transmitted from the ground to the fuselage. Among the landing gears, the semi-active MR damper landing gear is supposed to show high-shock absorption efficiency under various landing conditions and secure the stability when out of control. In the case of the MR damper landing gear using an annular channel rather than orifice, Amesim, a commercial multi-physics program, is considered as more useful than the conventional two-degree-of-freedom model because the damping force generated by the pressure drop through the flow annular path can cause cavitation in the low-pressure chamber of the MR damper with a specific internal structure. In this paper, the main dynamic characteristics of the MR damper landing gear with an annular type flow path structure has been analyzed under the condition of cavitation. Based on the analysis results using Amesim, a design guideline for the MR damper flow path that prevents cavitation has been proposed based on the modification of the arrangement of internal components of the damper. The guideline was verified through a drop simulation.

항공기의 착륙장치는 지상에서 동체로 전달되는 충격에너지를 흡수 및 소산시키는 장치이다. 착륙장치 중 반능동형 MR 댐퍼 착륙장치는 다양한 착륙조건에서 높은 충격흡수효율을 보여주며 제어 불능 시 안정성을 확보할 수 있는 장점이 있다. 오리피스가 아닌 환형 관유로를 이용하는 MR 댐퍼 착륙장치의 경우, 유로 압력강하로 인해 발생하는 감쇠력이 MR 댐퍼 내부 형상 구조에 따라 저압 챔버에서 캐비테이션을 유발할 수 있어 기존의 2 자유도계 모델링 기법보다 다중물리시스템 해석 프로그램인 Amesim이 더 유용하다. Amesim을 이용한 해석결과를 바탕으로 착륙장치 내부 유로 형상 배치를 수정하여 캐비테이션을 방지할 수 있는 유로 구조를 제안하였고 낙하 시험 시뮬레이션 결과를 통해 이를 검증하였다. 본 논문에서는 환형 관로 형태 유로 구조를 갖는 MR 댐퍼형 착륙장치의 캐비테이션 발생시 주요 특성을 파악하였고, 아울러 내부형상 배치 수정을 통해 이를 방지하는 방안을 제시하였다.

Keywords

References

  1. N. S. Currey, Aircraft Landing Gear Design: Principles and Practices, American Institute of Aeronautics and Astronautics, Reston, WA, USA, 1988.
  2. Y. Hakan, and S. Mert, "Active control of a non-linear landing gear system having oleo pneumatic shock absorber using robust linear quadratic regulator approach," Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering, vol. 232, no. 13, pp. 2397-2411, 2018. https://doi.org/10.1177/0954410017713773
  3. S. Sivakumar, and A. P. Haran, "Mathematical model and vibration analysis of aircraft with active landing gears," Journal of Vibration and Control, vol. 21, no. 2, pp. 229-245, 2015. https://doi.org/10.1177/1077546313486908
  4. W. U. Dongsu, G. U. Hongbin, and L. I. U. Hui, "GA-based model predictive control of semi-active landing gear." Chiness Journal of Aeronautics, vol. 20, no. 1, pp. 47-54, July 2007. https://doi.org/10.1016/S1000-9361(07)60006-5
  5. D. Karnopp, and M. J. Crosby, R. A. Harwood, "Vibration control using semi-active force generators," Journal of Manufacturing Science and Engineering, vol. 96, no. 2, pp. 619-626, May 1974.
  6. D. Y. Lee, Y. J. Nam, R. Yamane, and M. K. Park, "Performance evaluation on vibration control of MR landing gear," Journal of Physics, Conference Series (Online), vol. 149, no. 1, pp.1-6, Aug. 2008.
  7. J. M. Tak, "Hybrid Control of Aircraft Landing Gear using Magneto rheological Damper," International Journal of Aerospace System Science and Engineering, vol. 12, no. 1, pp. 1-9, Feb. 2018.
  8. Y. O. Hyun, J. U. Hwang, J. H. Hwang, J. S. Bae, K. H. Lim, D. M. Kim, D. W. Kim, and M. H. Park, "Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper." Journal of Korean Society for Aeronautical and Space Science, vol. 38, no. 4, pp. 315-320, April 2010. https://doi.org/10.5139/JKSAS.2010.38.4.315
  9. L. Q. Viet, and J. H. Hwang, "Robust Adaptive Control for an Aircraft Landing Gear Equipped with a Magnetorheological Damper," Applied Sciences, Switzerland, vol. 10, no. 4, Feb. 2020.
  10. N. M. Wereley, G. M. Kamath, and V. Madhavan, "Hysteresis Modelling of Semi-Active Magnetorheological Helicopter Dampers." Journal of Intelligent Material Systems and Structure, vol. 10, no. 8, pp. 624-633. Aug. 1999. https://doi.org/10.1106/nhle-fndl-u243-l8u0
  11. D. C. Batterbee, N. D. Sims, R. Stanway, and Z. Wolejsza, "Magnetorheological landing gear. Part 1: A design methodology," Smart Material and Structure, vol. 16, no. 6, pp. 2429-2440, Oct. 2007. https://doi.org/10.1088/0964-1726/16/6/046
  12. D. C. Batterbee, N. D. Sims, R. Stanway, and Z. Wolejsza, "Magnetorheological landing gear. Part 2: Validation using experimental data," Smart Material and Structure, vol. 16, no. 6, pp.897-902, Oct. 2007.
  13. O. Ashour, C. A. Rogers, and W. Kodonsky, "Magnetorheological Fluids: Materials, Characteristics, and Devices," Journal of Intelligent Material Systems and Structure, vol. 7, pp. 123-130, March 1996. https://doi.org/10.1177/1045389X9600700201
  14. J. D. Carlson, D. M. Catanzarite and K. A. St. Clair "Commercial Magneto-rheological Fluid Devices," International Journal of Modern Physics B, vol. 10, no. 23 & 24, pp. 2857-2865, Dec. 1996. https://doi.org/10.1142/S0217979296001306
  15. S. B. Choi, and Y. M. Han, Magnetorheological Fluid Technology: Applications in Vehicle Systems, CRC Press, 2012.
  16. J. S. Lee, "Performance Analysis for the Oleo-pneumatic Landing Gear," The Korean Society of Mechanical Engineers, pp. 2271-2276, Nov. 2014.
  17. B. Milwitzky, and F. E. Cook, "Analysis of Landing Gear Behavior," National Advisory Committe for Aeronautics NACA Report 1154, 1953.
  18. H. C, Han, B. G. Kim, and S. B. Choi, "Design of a New Magneto rheological Damper Based on Passive Oleo-Pneumatic Landing Gear," Journal of Aircraft, vol. 55, no. 6, pp. 2510-2520, Nov. 2018. https://doi.org/10.2514/1.c034996
  19. C. H. Han, B, H, Kang, S. B. Choi, J. M. Tak, and J. H. Hwang, "Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers," Journal of Aircraft, vol. 56, no. 5, pp. 1980-1986, Aug. 2019. https://doi.org/10.2514/1.C035298
  20. I. E. Idelchik, Handbook of hydraulic resistance, 4th Ed., Begell Housein, New York, 2008.
  21. R. C. Binder, Fluid Mechanics, 3rd Ed., Prentice-Hall, New York, 1956.
  22. J. N. Daniels, "A method for landing gear modeling and simulation with experimental validation" NASA Contractor Report 201601, Washington, DC, USA, pp. 1-97, June 1996.
  23. S. F. N. Jenkins "Landing gear design and development," Proceedings of the Institution of Mechanical Engineers, vol. 203, no. 1, pp. 67-73, Jan. 1989.
  24. K. W. Mahinder, "Oleo-pneumatic Shock Strut Dynamic Analysis and Its Real Time Simulation," Journal of Aircraft, vol. 13, no. 4, pp. 303-308, April 1976. https://doi.org/10.2514/3.44526