전계방출 전자빔을 활용한 진행파관 진공전자소자 개발 동향

  • 최은미 (울산과학기술원 전기전자공학과)
  • Published : 2020.10.31

Abstract

Keywords

References

  1. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438-2447, (2004). https://doi.org/10.1109/TMTT.2004.835916
  2. J. H. Booske, R. J. Dobbs, C. J. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, "Vacuum electronics high power terahertz sources," IEEE Trans. Terahertz Sci. Tech., vol. 1, no. 1, (2011). https://doi.org/10.1109/TTHZ.2011.2162013
  3. R. J. Barker, J. H. Booske, N. C. Luhmann, and G. S. Nusinovich, "Modern microwave and Millimeter-wave power electronics,"A John Wiley & Sons, Inc. (2005).
  4. C. D. Joye, A. M. Cook, J. P. Calame, D. K. Abe, A. N. Vlasov, I. G. Chernyavskiy, K. T. Nguyen, E. L. Wright, D. E. Pershing, T. Kimura, M. Hyttinen, and B. Levush, "Demonstration of a high power, wide band 220-GHz traveling wave amplifier fabricated by UV-LIGA," IEEE. Trans. Electron Devices, vol. 61, no. 6, (2014).
  5. J. C. Tucek, et al., "Northrop Grumman Operation of a Compact 1.03 THz Power Amplifier"" Proceedings of the International Vacuum Electronics Conference (IVEC), (2016).
  6. http://lultrawave2020.eu/technology/
  7. I. G. Lee, W. Choi, J. Shin, and E. M. Choi* "Microscopic Analyses of Electrical Conductivity of Micromachined-Folded Waveguides Based on Surface Roughness Measurement for Terahertz Vacuum Electron Devices" IEEE Transactions on Terahertz Science and Technology vol. 8, iss. 6, pp. 710-718, November (2018). https://doi.org/10.1109/TTHZ.2018.2873146
  8. W. Choi, I. G. Lee, and E. M. Choi* "Design and Fabrication of a 300 GHz Modified Sine Waveguide Traveling-Wave Tube Using a Nano Computer Numerical Control Machine" IEEE Transactions on Electron Devices vol. 64, iss. 7, pp. 2955-2962 (2017). https://doi.org/10.1109/TED.2017.2706059
  9. J. Wang, Y. Yang, Y. Wang, W. Liu, M. Zhou, and T. Zuo, "A review on Scandia doped tungsten matrix scandate cathode," Tungsten 1:91-100 (2019). https://doi.org/10.1007/s42864-019-00007-8
  10. K. L. Jensen, "Field emitter arrays for plasma and microwave source applications," Plasma Phys. Vol.6, no.5, pp.2241-2253 (1999). https://doi.org/10.1063/1.873502
  11. D. R. Whaley, B. Gannon, C. Smith, C. M. Armstrong, and C. A. Spindt, "Application of field emitter arrays to microwave power amplifiers," IEEE Trans. Plasma Sci., vol. 28, no. 3, pp. 727-747 (2000). https://doi.org/10.1109/27.887712
  12. M. Garven, S. N. Spark, A. W. Cross, S. J. Cooke, and A. D. R. Phelps, "Gyrotron experiments employing a field emission array cathode," Phys. Rev. Lett., vol. 77, no.11, pp.2320-2323 (1996). https://doi.org/10.1103/PhysRevLett.77.2320
  13. H. Makishima, S. Miyano, H. Imura, J. Matsuoka, H. Takemura, and A. Okamoto, "Design and performance of traveling wave tubes using field emitter array cathodes," Appl. Surf. Sci., vol.146, no.1, pp.230-233 (1999). https://doi.org/10.1016/S0169-4332(99)00061-6
  14. H. Makishima, S. Miyano, H. Imura, J. Matsuoka, H. Takemura, and A. Okamoto, "Design and performance of traveling-wave tubes using field emitter array cathodes," Appl. Surf Sci., vol. 146, pp.230-233 (1999). https://doi.org/10.1016/S0169-4332(99)00061-6
  15. D. R. Whaley, R. Duggal, C. M. Armstrong, C. L. Bellow, C. E. Holland, and C. A. Spindt, "100 W operation of a cold cathode TWT," IEEE Trans. Electron Devices, vol.56, no.5, (2009).
  16. X. Li, B. Chen, Y. Feng, Y. Zhang, S. Deng, and J. Feng, "Beam test of a novel CNT cathode-based electron gun assembled in a TWT," IEEE Trans. Electron Dev., vol. 66, no. 5, (2019).
  17. X. Yuan, W. Zhu, Y. Zhang, N. Xu, Y. Yan, J. Wu, Y. Shen, J. Chen, J. She, and S. Deng, "A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron," Sci. Rep. 6:32936 (2016). https://doi.org/10.1038/srep32936