DOI QR코드

DOI QR Code

Curved beam through matrices associated with support conditions

  • Gimena, Faustino N. (Department of Engineering, Public University of Navarra, Campus Arrosadia) ;
  • Gonzaga, Pedro (Department of Engineering, Public University of Navarra, Campus Arrosadia) ;
  • Valdenebro, Jose V. (Department of Engineering, Public University of Navarra, Campus Arrosadia) ;
  • Goni, Mikel (Department of Engineering, Public University of Navarra, Campus Arrosadia) ;
  • Reyes-Rubiano, Lorena S. (School of Economic and Administrative Sciences, University of La Sabana)
  • Received : 2019.06.18
  • Accepted : 2020.07.08
  • Published : 2020.11.10

Abstract

In this article, the values of internal force and deformation of a curved beam under any action with the firm or elastic supports are determined by using structural matrices. The article presents the general differential formulation of a curved beam in global coordinates, which is solved in an orderly manner using simple integrals, thus obtaining the transfer matrix expression. The matrix expression of rigidity is obtained through reordering operations on the transfer notation. The support conditions, firm or elastic, provide twelve equations. The objective of this article is the construction of the algebraic system of order twenty-four, twelve transfer equations and twelve support equations, which relates the values of internal force and deformation associated with the two ends of the directrix of the curved beam. This final algebraic system, expressed in matrix form, is divided into two subsystems: twelve algebraic equations of internal force and twelve algebraic equations of deformation. The internal force and deformation values for any point in the curved beam directrix are determined from these values in the initial position. The five examples presented show how to apply the matrix procedures developed in this article, whether they are curved beams with the firm or elastic support.

Keywords

References

  1. Akoz, A.Y., Omurtag, M.H. and Dogruoglu, A.N. (1991), "Mixed finite element formulation of three dimensional straight and circular bars", Int. J. Solids Struct., 28(2), 225-34. https://doi.org/10.1016/0020-7683(91)90207-V.
  2. Alarcon, E., Brebbia, C. and Dominguez, J. (1978), "The boundary element method in elasticity", Eng. Anal. Bound Elem., 20(9), 625-639. https://doi.org/10.1016/0020-7403(78)90021-8.
  3. Arici M. and Granata M.F. (2011), "Generalized curved beam on elastic foundation solved by transfer matrix method", Struct. Eng. Mech., 40(2), 279-295. https://doi.org/10.12989/sem.2011.40.2.279.
  4. Balduzzi, G., Aminbaghai, M., Sacco, E., Füssl, J., Eberhardsteiner, J. and Auricchio F. (2016), "Non-prismatic beams: a simple and effective Timoshenko-like model", Int. J. Solids Struct., 90(7), 236-250. https://doi.org/10.1016/j.ijsolstr.2016.02.017.
  5. Banan, MR., Karami, G. and Farshad, M. (1989), "Finite element analysis of curved beams on elastic foundations", Comput. Struct., 32(1), 45-53. https://doi.org/10.1016/0045-7949(89)90067-9.
  6. Bathe, KJ. (1996), Finite Element Procedures, Prentice Hall, New Jersey, USA.
  7. Benedetti A. and Tralli A. (1989), "A new hybrid F.E. model for arbitrarily curved beam-I. Linear analysis", Comput Struct, 33(6), 1437-1449. https://doi.org/10.1016/0045-7949(89)90484-7.
  8. Boresi, AP., Chong, KP. and Sagal, S. (2003), Approximate Solution Methods in Engineering Mechanics, John Wiley and Sons, New Jersey, USA.
  9. Burden, R. and Faires, D. (1985), Numerical Analysis, PWS Publishing Company, Boston, USA.
  10. Cesarek P., Saje M. and Zupan D. (2012) "Kinematically exact curved and twisted strain-based beam", Int. J. Solids Struct., 49(13) 1802-1817, https://doi.org/10.1016/j.ijsolstr.2012.03.033.
  11. Gimena, F.N., Gonzaga, P. and Gimena, L. (2008a), "3D-curved beam element with varying cross-sectional area under generalized loads", Eng. Struct., 30(2) 404-411. https://doi.org/10.1016/j.engstruct.2007.04.005.
  12. Gimena, F.N., Gonzaga, P. and Gimena, L. (2008b), "Stiffness and transfer matrices of a non-naturally curved 3D-beam element", Eng. Struct., 30(6), 1770-1781. https://doi.org/10.1016/j.engstruct.2007.10.012.
  13. Gimena, L., Gimena, F.N. and Gonzaga, P. (2008c), "Structural analysis of a curved beam element defined in global coordinates", Eng Struct, 30(11), 3355-3364. https://doi.org/10.1016/j.engstruct.2008.05.011.
  14. Gimena, F.N., Gonzaga, P. and Gimena, L. (2009), "Structural matrices of a curved-beam element", Struct. Eng. Mech., 33(3): 307-323. https://doi.org/10.12989/sem.2009.33.3.307.
  15. Gimena L., Gonzaga P. and Gimena F.N. (2010), "Forces, moments, rotations, and displacements of polynomial-shaped curved beams", Int. J. Struct. Stab. Dyn., 10(1), 77-89. https://doi.org/10.1142/s0219455410003336.
  16. Gimena, F.N., Gonzaga, P. and Gimena, L. (2014a), "Analytical formulation and solution of arches defined in global coordinates", Eng. Struct., 60(2), 189-198. https://doi.org/10.1016/j.engstruct.2013.12.004.
  17. Gimena, L., Gonzaga, P. and Gimena, F.N. (2014b), "Boundary equations in the finite transfer method for solving differential equation systems", Appl. Math. Model, 38(9-10), 2648-2660. https://doi.org/10.1016/j.apm.2013.11.001.
  18. Gonzaga, P., Gimena, F.N. and Gimena, L. (2014), "Stiffness and Transfer Matrix Analysis in Global Coordinates of a 3D Curved Beam", Int. J. Struct. Stab. Dyn., 14(7), 1450019 (19 pages). https://doi.org/10.1142/S0219455414500199.
  19. Hu, Y., Zhou, H., Zhu, W. and Jiang. C. (2018), "Large deformation analysis of composite spatial curved beams with arbitrary undeformed configurations described by Euler angles with discontinuities and singularities", Comput. Struct., 210(11), 122-134. https://doi.org/10.1016/j.compstruc.2018.07.009.
  20. Just, D.J. (1982), "Circularly curved beams under plane loads", J. Struct. Div., 108(8), 1858-1873. https://doi.org/10.1061/JSDEAG.0006024
  21. Kardestuncer, H. (1974), Elementary Matrix Analysis of Structures, McGraw-Hill, New York, USA.
  22. Kim, N., Yun, HT. and Kim, MY. (2004), "Exact static element stiffness matrices of non-symmetric thin-walled curved beams" Int. J. Numer. Methods Eng., 61(2), 274-302. https://doi.org/10.1002/nme.1066.
  23. Lee, H.P. (1969), "Generalized stiffness matrix of a curved-beam element" AIAA J., 7(10), 2043-2045. https://doi.org/10.2514/3.5513.
  24. Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover, New York, USA.
  25. Marquis, J.P. and Wang, T.M. (1989), "Stiffness matrix of parabolic beam element", Comput. Struct., 31(6), 863-870. https://doi.org/10.1016/0045-7949(89)90271-x.
  26. Molari, L. and Ubertini, F. (2006), "A flexibility-based model for linear analysis of arbitrarily curved arches", J. Numer. Methods Eng., 65(9), 1333-1353. https://doi.org/10.1002/nme.1497.
  27. Morris, D.L. (1968), "Curved beam stiffness coefficients", J. Struct. Div., 94(5) 1165-1178.
  28. Palaninathan, R. and Chandrasekaran, PS. (1985), "Curved beam element stiffness matrix formulation", Comput. Struct., 21(4), 83-105. https://doi.org/10.1016/0045-7949(85)90143-9.
  29. Parcel, J.I. and Moorman, R.B. (1955), Analysis of Statically Indeterminate Structures, John Wiley, New York, USA.
  30. Pestel, EC. and Leckie, EA. (1963), Matrix Methods in Elastomechanics, McGraw-Hill, New York, USA.
  31. Rahman, M. (1991), Applied Differential Equations for Scientists and Engineers: Ordinary Differential Equations. Computational Mechanics Publications, Glasgow, United Kingdom.
  32. Rajasekaran, S. and Padmanabhan, S. (1989), "Equations of curved beams", J. Eng. Mech.-ASCE, 115(5) 1094-1111. https://doi.org/10.1061/(asce)0733-9399(1989)115:5(1094).
  33. Rajasekaran, S., Gimena, L., Gonzaga, P. and Gimena, F.N. (2009), "Solution method for the classical beam theory using differential quadrature", Struct. Eng. Mech., 33(6) 675-696. https://doi.org/10.12989/sem.2009.33.6.675.
  34. Rosen, A. and Gur, O. (2009), "A transfer matrix model of large deformations of curved rods", Comput. Struct., 87(7-8) 467-484. https://doi.org/10.1016/j.compstruc.2008.12.014.
  35. Sarria, F., Gimena, FN., Gonzaga, P., Goni, M. and Gimena, L. (2018), "Formulation and solution of curved beams with elastic supports", Teh Vjesn, 25 Suppl.1:56-65. https://doi.org/10.17559/TV-20160624100741.
  36. Scordelis, A.C. (1960), "Internal forces in uniformly loaded helicoidal girders", Proceedings of American Concrete Institute, 31(4) 1013-1026. https://doi.org/10.14359/8127.
  37. Struik, D.J. (1961), Lectures on classical differential geometry, Addison-Wesley Publishing Co, London, England.
  38. Tabarrok, B., Farshad, M. and Yi H. (1988), "Finite element formulation of spatially curved and twisted rods", Comput. Methods Appl. Mech. Eng., 70(3) 275-299. https://doi.org/10.1016/0045-7825(88)90021-7.
  39. Timoshenko, S. (1953), History of Strength of Materials, McGraw-Hill, New York, USA.
  40. Timoshenko, S. (1957), Strength of Materials, D. Van Nostrand Company, New York, USA.
  41. Tong, G. and Xu, Q. (2002), "An exact theory for curved beams with any thin-walled open sections", Adv. Struct. Eng., 5(4), 195-209. https://doi.org/10.1260/136943302320974572
  42. Tuma, JJ. and Munshi, RK. (1971), Theory and Problems of Advanced Structural Analysis, McGraw-Hill, New York, USA.
  43. Turkalj, G., Cehic, Z. and Brnic, J. (2006), "A beam model for the buckling analysis of curved beam-type structures considering curvature effects", Transactions FAMENA, 30(1), 1-16.
  44. Wang, T.M. and Merrill, T.F. (1988), "Stiffness coefficients of noncircular curved beams", J. Struct. Eng., 114(7), 1689-1699. https://doi.org/10.1061/(asce)0733-9445(1988)114:7(1689).
  45. Washizu, K. (1964), "Some considerations on a naturally curved and twisted slender beam", J. Applied Math Phys., 43 111-116. https://doi.org/10.1002/sapm1964431111.
  46. Yang, Y.B. and Kuo, S.R. (1987), "Effect of curvature on stability of curved beams", J. Eng. Mech., 113(6), 1185-1202. https://doi.org/10.1061/(asce)0733-9445(1987)113:6(1185).
  47. Yu, A.M., Yang, X.G. and Nie, G.H. (2006), "Generalized coordinate for warping of naturally curved and twisted beams with general cross-sectional shapes", Int. J. Solids Struct., 43(10) 2853-2867. https://doi.org/10.1016/j.ijsolstr.2005.05.045.