References
- Akoz, A.Y., Omurtag, M.H. and Dogruoglu, A.N. (1991), "Mixed finite element formulation of three dimensional straight and circular bars", Int. J. Solids Struct., 28(2), 225-34. https://doi.org/10.1016/0020-7683(91)90207-V.
- Alarcon, E., Brebbia, C. and Dominguez, J. (1978), "The boundary element method in elasticity", Eng. Anal. Bound Elem., 20(9), 625-639. https://doi.org/10.1016/0020-7403(78)90021-8.
- Arici M. and Granata M.F. (2011), "Generalized curved beam on elastic foundation solved by transfer matrix method", Struct. Eng. Mech., 40(2), 279-295. https://doi.org/10.12989/sem.2011.40.2.279.
- Balduzzi, G., Aminbaghai, M., Sacco, E., Füssl, J., Eberhardsteiner, J. and Auricchio F. (2016), "Non-prismatic beams: a simple and effective Timoshenko-like model", Int. J. Solids Struct., 90(7), 236-250. https://doi.org/10.1016/j.ijsolstr.2016.02.017.
- Banan, MR., Karami, G. and Farshad, M. (1989), "Finite element analysis of curved beams on elastic foundations", Comput. Struct., 32(1), 45-53. https://doi.org/10.1016/0045-7949(89)90067-9.
- Bathe, KJ. (1996), Finite Element Procedures, Prentice Hall, New Jersey, USA.
- Benedetti A. and Tralli A. (1989), "A new hybrid F.E. model for arbitrarily curved beam-I. Linear analysis", Comput Struct, 33(6), 1437-1449. https://doi.org/10.1016/0045-7949(89)90484-7.
- Boresi, AP., Chong, KP. and Sagal, S. (2003), Approximate Solution Methods in Engineering Mechanics, John Wiley and Sons, New Jersey, USA.
- Burden, R. and Faires, D. (1985), Numerical Analysis, PWS Publishing Company, Boston, USA.
- Cesarek P., Saje M. and Zupan D. (2012) "Kinematically exact curved and twisted strain-based beam", Int. J. Solids Struct., 49(13) 1802-1817, https://doi.org/10.1016/j.ijsolstr.2012.03.033.
- Gimena, F.N., Gonzaga, P. and Gimena, L. (2008a), "3D-curved beam element with varying cross-sectional area under generalized loads", Eng. Struct., 30(2) 404-411. https://doi.org/10.1016/j.engstruct.2007.04.005.
- Gimena, F.N., Gonzaga, P. and Gimena, L. (2008b), "Stiffness and transfer matrices of a non-naturally curved 3D-beam element", Eng. Struct., 30(6), 1770-1781. https://doi.org/10.1016/j.engstruct.2007.10.012.
- Gimena, L., Gimena, F.N. and Gonzaga, P. (2008c), "Structural analysis of a curved beam element defined in global coordinates", Eng Struct, 30(11), 3355-3364. https://doi.org/10.1016/j.engstruct.2008.05.011.
- Gimena, F.N., Gonzaga, P. and Gimena, L. (2009), "Structural matrices of a curved-beam element", Struct. Eng. Mech., 33(3): 307-323. https://doi.org/10.12989/sem.2009.33.3.307.
- Gimena L., Gonzaga P. and Gimena F.N. (2010), "Forces, moments, rotations, and displacements of polynomial-shaped curved beams", Int. J. Struct. Stab. Dyn., 10(1), 77-89. https://doi.org/10.1142/s0219455410003336.
- Gimena, F.N., Gonzaga, P. and Gimena, L. (2014a), "Analytical formulation and solution of arches defined in global coordinates", Eng. Struct., 60(2), 189-198. https://doi.org/10.1016/j.engstruct.2013.12.004.
- Gimena, L., Gonzaga, P. and Gimena, F.N. (2014b), "Boundary equations in the finite transfer method for solving differential equation systems", Appl. Math. Model, 38(9-10), 2648-2660. https://doi.org/10.1016/j.apm.2013.11.001.
- Gonzaga, P., Gimena, F.N. and Gimena, L. (2014), "Stiffness and Transfer Matrix Analysis in Global Coordinates of a 3D Curved Beam", Int. J. Struct. Stab. Dyn., 14(7), 1450019 (19 pages). https://doi.org/10.1142/S0219455414500199.
- Hu, Y., Zhou, H., Zhu, W. and Jiang. C. (2018), "Large deformation analysis of composite spatial curved beams with arbitrary undeformed configurations described by Euler angles with discontinuities and singularities", Comput. Struct., 210(11), 122-134. https://doi.org/10.1016/j.compstruc.2018.07.009.
- Just, D.J. (1982), "Circularly curved beams under plane loads", J. Struct. Div., 108(8), 1858-1873. https://doi.org/10.1061/JSDEAG.0006024
- Kardestuncer, H. (1974), Elementary Matrix Analysis of Structures, McGraw-Hill, New York, USA.
- Kim, N., Yun, HT. and Kim, MY. (2004), "Exact static element stiffness matrices of non-symmetric thin-walled curved beams" Int. J. Numer. Methods Eng., 61(2), 274-302. https://doi.org/10.1002/nme.1066.
- Lee, H.P. (1969), "Generalized stiffness matrix of a curved-beam element" AIAA J., 7(10), 2043-2045. https://doi.org/10.2514/3.5513.
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover, New York, USA.
- Marquis, J.P. and Wang, T.M. (1989), "Stiffness matrix of parabolic beam element", Comput. Struct., 31(6), 863-870. https://doi.org/10.1016/0045-7949(89)90271-x.
- Molari, L. and Ubertini, F. (2006), "A flexibility-based model for linear analysis of arbitrarily curved arches", J. Numer. Methods Eng., 65(9), 1333-1353. https://doi.org/10.1002/nme.1497.
- Morris, D.L. (1968), "Curved beam stiffness coefficients", J. Struct. Div., 94(5) 1165-1178.
- Palaninathan, R. and Chandrasekaran, PS. (1985), "Curved beam element stiffness matrix formulation", Comput. Struct., 21(4), 83-105. https://doi.org/10.1016/0045-7949(85)90143-9.
- Parcel, J.I. and Moorman, R.B. (1955), Analysis of Statically Indeterminate Structures, John Wiley, New York, USA.
- Pestel, EC. and Leckie, EA. (1963), Matrix Methods in Elastomechanics, McGraw-Hill, New York, USA.
- Rahman, M. (1991), Applied Differential Equations for Scientists and Engineers: Ordinary Differential Equations. Computational Mechanics Publications, Glasgow, United Kingdom.
- Rajasekaran, S. and Padmanabhan, S. (1989), "Equations of curved beams", J. Eng. Mech.-ASCE, 115(5) 1094-1111. https://doi.org/10.1061/(asce)0733-9399(1989)115:5(1094).
- Rajasekaran, S., Gimena, L., Gonzaga, P. and Gimena, F.N. (2009), "Solution method for the classical beam theory using differential quadrature", Struct. Eng. Mech., 33(6) 675-696. https://doi.org/10.12989/sem.2009.33.6.675.
- Rosen, A. and Gur, O. (2009), "A transfer matrix model of large deformations of curved rods", Comput. Struct., 87(7-8) 467-484. https://doi.org/10.1016/j.compstruc.2008.12.014.
- Sarria, F., Gimena, FN., Gonzaga, P., Goni, M. and Gimena, L. (2018), "Formulation and solution of curved beams with elastic supports", Teh Vjesn, 25 Suppl.1:56-65. https://doi.org/10.17559/TV-20160624100741.
- Scordelis, A.C. (1960), "Internal forces in uniformly loaded helicoidal girders", Proceedings of American Concrete Institute, 31(4) 1013-1026. https://doi.org/10.14359/8127.
- Struik, D.J. (1961), Lectures on classical differential geometry, Addison-Wesley Publishing Co, London, England.
- Tabarrok, B., Farshad, M. and Yi H. (1988), "Finite element formulation of spatially curved and twisted rods", Comput. Methods Appl. Mech. Eng., 70(3) 275-299. https://doi.org/10.1016/0045-7825(88)90021-7.
- Timoshenko, S. (1953), History of Strength of Materials, McGraw-Hill, New York, USA.
- Timoshenko, S. (1957), Strength of Materials, D. Van Nostrand Company, New York, USA.
- Tong, G. and Xu, Q. (2002), "An exact theory for curved beams with any thin-walled open sections", Adv. Struct. Eng., 5(4), 195-209. https://doi.org/10.1260/136943302320974572
- Tuma, JJ. and Munshi, RK. (1971), Theory and Problems of Advanced Structural Analysis, McGraw-Hill, New York, USA.
- Turkalj, G., Cehic, Z. and Brnic, J. (2006), "A beam model for the buckling analysis of curved beam-type structures considering curvature effects", Transactions FAMENA, 30(1), 1-16.
- Wang, T.M. and Merrill, T.F. (1988), "Stiffness coefficients of noncircular curved beams", J. Struct. Eng., 114(7), 1689-1699. https://doi.org/10.1061/(asce)0733-9445(1988)114:7(1689).
- Washizu, K. (1964), "Some considerations on a naturally curved and twisted slender beam", J. Applied Math Phys., 43 111-116. https://doi.org/10.1002/sapm1964431111.
- Yang, Y.B. and Kuo, S.R. (1987), "Effect of curvature on stability of curved beams", J. Eng. Mech., 113(6), 1185-1202. https://doi.org/10.1061/(asce)0733-9445(1987)113:6(1185).
- Yu, A.M., Yang, X.G. and Nie, G.H. (2006), "Generalized coordinate for warping of naturally curved and twisted beams with general cross-sectional shapes", Int. J. Solids Struct., 43(10) 2853-2867. https://doi.org/10.1016/j.ijsolstr.2005.05.045.