DOI QR코드

DOI QR Code

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, San (Department of Mechanical Convergence Engineering, Gyeongsang National University)
  • Received : 2020.06.07
  • Accepted : 2020.07.06
  • Published : 2020.11.10

Abstract

In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1G1A1006911). This work was also supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20184030202000). Prof. Phill-Seung Lee (Korea Advanced Institute of Science and Technology) is kindly acknowledged for his valuable comments on improving the manuscript.

References

  1. An, X.M., Li, L.X., Ma, G.W., and Zhang, H.H. (2011), "Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes", Comput. Methods. Appl. Mech. Eng., 200(5-8), 665-74. https://doi.org/10.1016/j.cma.2010.09.013.
  2. An, X.M., Zhao, Z.Y., Zhang, H.H., and Li, L.X. (2012), "Investigation of linear dependence problem of threedimensional partition of unity-based finite element methods", Comput. Methods. Appl. Mech. Eng., 233, 137-51. https://doi.org/10.1016/j.cma.2012.04.010.
  3. Babuska, I., and Melenk, J.M. (1996), "The Partition of Unity Method", Int. J. Numer. Methods Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.
  4. Babuska, I., and Banerjee, U. (2012), "Stable generalized finite element method (SGFEM)", Comput. Methods Appl. Mech. Eng., 201, 91-111. https://doi.org/10.1016/j.cma.2011.09.012.
  5. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New York, U.S.A.
  6. Belytschko, T., and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), 602-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  7. Boo, S.H., Kim, J.G., and Lee, P.S. (2016), "A simplified error estimator for the CB method and its application to error control", Comput. Struct., 164, 53-62. https://doi.org/10.1016/j.compstruc.2015.11.003.
  8. Boo, S.H., and Lee, P.S. (2017), "A dynamic condensation method using algebraic substructuring", Int. J. Numer. Methods Eng., 109(12), 1701-1720. https://doi.org/10.1002/nme.5349.
  9. Boo, S.H., Kim, J.H., and Lee, P.S. (2018), "Towards improving the enhanced Craig-Bampton method", Comput. Struct., 196, 63-75. https://doi.org/10.1016/j.compstruc.2017.10.017.
  10. Cook, R.D. (2007), Concepts and applications of finite element analysis, John Wiley & Sons, New York, U.S.A.
  11. Fries TP, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng., 2010;84(3):253-304. https://doi.org/10.1002/nme.2914.
  12. Ham, S., and Bathe, K.J. (2012), "A finite element method enriched for wave propagation problems". Comput. Struct., 94, 1-12. https://doi.org/10.1016/j.compstruc.2012.01.001.
  13. Hong, W.T., and Lee, P.S. (2013), "Coupling flat-top partition of unity method and finite element method", Finite Elem. Anal. Des., 67, 43-55. https://doi.org/10.1016/j.finel.2012.12.002.
  14. Hughes, T.J.R. (2000), The finite element method-Linear static and dynamic finite element analysis, Dover Publications, New York, U.S.A.
  15. Hyun, C., Boo, S.H., and Lee, P.S. (2020), "Improving the computational efficiency of the enhanced AMLS method", Comput. Struct., 228, 106158. https://doi.org/10.1016/j.compstruc.2019.106158.
  16. Jeon, H.M., Lee, P.S., and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-42. https://doi.org/10.1016/j.compstruc.2013.12.003.
  17. Jun, H., Yoon, K., Lee, P.S., and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Methods Appl. Mech. Eng., 337, 458-480. https://doi.org/10.1016/j.cma.2018.04.007.
  18. Kim, J., and Bathe, K.J. (2013), "The finite element method enriched by interpolation covers", Comput. Struct., 116, 35-49. https://doi.org/10.1016/j.compstruc.2012.10.001.
  19. Kim, J., and Bathe, K.J. (2014), "Towards a procedure to automatically improve finite element solutions by interpolation covers", Comput. Struct., 131, 81-97. https://doi.org/10.1016/j.compstruc.2013.09.007.
  20. Kim, S., and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43. https://doi.org/10.1016/j.compstruc.2018.03.001.
  21. Kim, S., and Lee, P.S. (2019), "New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements", Comput. Struct., 216, 40-63. https://doi.org/10.1016/j.compstruc.2018.12.002.
  22. Ko, Y., Lee, Y., Lee, P.S., and Bathe, K.J. (2017), "Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193,187-206. https://doi.org/10.1016/j.compstruc.2017.08.003.
  23. Lee, C., and Lee, P.S. (2018), "A new strain smoothing method for triangular and tetrahedral finite elements", Comput. Methods Appl. Mech. Eng., 341, 939-955. https://doi.org/10.1016/j.cma.2018.07.022.
  24. Lee, C., and Lee, P.S. (2019), "The strain-smoothed MITC3+ shell finite element", Comput. Struct., 223, 106096. https://doi.org/10.1016/j.compstruc.2019.07.005.
  25. Lee, Y., Lee, P.S., and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
  26. Oden, J.T., Duarte, C.A., and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Methods Appl. Mech. Eng., 153(1-2), 117-26. https://doi.org/10.1016/S0045-7825(97)00039-X.
  27. Strouboulis, T., Babuska, I., and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Methods Appl. Mech. Eng., 181(1-3), 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9.
  28. Tian, R., Yagawa, G., and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Methods Appl. Mech. Eng., 195(37-40), 4768-82. https://doi.org/10.1016/j.cma.2005.06.030.
  29. Yoon, K.H., Lee, Y.G., and Lee, P.S. (2012), "A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities", Struct. Eng. Mech., 43(4), 411-37. https://doi.org/10.12989/sem.2012.43.4.411.
  30. Zhang, Q., Banerjee, U., and Babuska, I. (2014), "Higher order stable generalized finite element method", Numer. Math., 128(1), 1-29. https://doi.org/10.1007/s00211-014-0609-1.
  31. Zienkiewicz, O.C. (1991), The finite element method, McCraw-Hil, New York, U.S.A.