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Abstract 
 

It is tremendously important to construct decision trees to use as a tool for knowledge 
representation from a given decision table. However, the usual algorithms may split the 
decision table based on each value, which is not efficient for numerical attributes. The 
methodology of this paper is to split the given decision table into binary groups as like the 
CART algorithm, that uses binary split to work for both categorical and numerical attributes. 
The difference is that it uses split for each attribute established by the directed acyclic graph in 
a dynamic programming fashion whereas, the CART uses binary split among all considered 
attributes in a greedy fashion. The aim of this paper is to study the effect of binary splits in 
comparison with each value splits when building the decision trees. Such effect can be studied 
by comparing the number of nodes, local and global misclassification rate among the 
constructed decision trees based on three proposed algorithms. 
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1. Introduction  

Decision trees can be used as a tool for knowledge representation that store information from 
the given data table to solve problems in many domains including decision support systems, 
machine learning, data mining, etc. Decision trees can be considered for optimization of its 
parameters for various purposes. For example, when we consider the optimization of the depth 
of tree, we match it with worst-case time complexity of algorithm (by simulating the tree as the 
work of the algorithm). Similarly, we consider the optimization of the average depth and 
number of nodes of tree by matching the average time complexity and space complexity of 
algorithm. Therefore, it is very natural to not only consider single criterion but also 
bi-objective optimization (BOO) of such different parameters. In the case of BOO, it is 
necessary to study number of misclassification (#misclassifications) vs. number of nodes so 
that the optimized tree can be useful for both prediction and well as shorter trees for 
knowledge representation.  
 

In this paper, the aim is to study BOO by comparing the following three cost functions of 
the tree TR for a decision table (data set) TB (shown below in Table 1). 
 

Table 1. Description of the three cost functions under study 
Cost function Description 
NN(TR) the number of nodes in TR for the table TB 
GM(TB, TR) the global misclassification rate of TR for the table TB 
LM(TB, TR) the local misclassification rate of TR for the table TB 

 
 

The cost functions GM(TB, TR) and LM(TB, TR) has been mentioned first in [3]. GM(TB, 
TR) is identical to the #misclassifications of TR on TB divided by the number of rows (#rows) 
in TB. LM(TB, TR) is the maximum of (#𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

# 𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚
) among all terminal nodes of TR on 

TB. It is easy to manifest that GM(TB, TR) is at most LM(TB, TR) 
 
As it is stated before that, the goal is to find a decision tree 𝑇𝑇𝑇𝑇 that has smaller number of 

nodes as well as smaller # misclassifications. In [3], it is found that the global misclassification 
rate may not be efficient cost function because #misclassifications may not be equally 
dispersed. Besides, the proportion of #misclassifications can be big enough for a certain 
terminal nodes.  Therefore, the local misclassification rate is also very important. 
 

Let us review the literature regarding the optimization associated with decision trees. Many 
of such problems are NP-hard [9, 10, 23]. Nonetheless, many researchers have studied 
approximate optimization techniques for decision trees (for example, genetic algorithms [15], 
simulated annealing [17], and ant colony techniques [12]). Besides, other researchers have 
studied the comprehensive algorithms for decision tree optimization (for example, brute-force 
algorithms [19], dynamic programming [16, 18, 20], and branch-and-bound technique [14]). 
However, none has studied in the direction of dynamic programming for bi-objective (and 
multi-objective) optimization of decision trees except the authors of [1, 2]. Previously, the 
authors [3] proposed three algorithms for BOO of decision tree based on expansion of 
dynamic programming and studied the parameters NN, GM, and LM of the constructed 
decision trees. Unfortunately, these algorithms are applicable to decision tables with 
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categorical attributes only. Another problem is that sometimes, the number of nodes in the 
constructed decision trees is very large.  

 
In this paper, two algorithms (GM and LM algorithms) have been designed for the 

construction of decision trees, that can be suitable to middle-sized tables containing 
categorical as well as numerical attributes. These algorithms are based on expansions of 
dynamic programming — BOO of CART-like decision trees (CL-trees) [1, 2, 6, 13] relative to 
the parameters NN and GM, and relative to the parameters NN and LM. In CL-trees, instead of 
the initial attributes, binary splits have been used as it was done in the original CART 
algorithm [13]. One more algorithm (GLM algorithm) is also designed which is the mixture of 
the GM and LM algorithm. The considered algorithms have been applied to 14 decision tables 
from the UCI Machine Learning Repository [4], and three parameters are studied NN, GM, 
and LM of the constructed trees. Furthermore, the obtained results are compared with the 
previous results in [3].  

 
The obtained results show that the new algorithms produce decision trees containing on 

average smaller number of nodes, smaller global misclassification rate as well as smaller local 
misclassification rate for many decision tables. Therefore, the consideration of such 
algorithms can be useful for the extraction of knowledge from middle-sized decision tables 
and for its representation by decision trees. These algorithms can be used in different areas of 
data analysis including rough set theory [21, 22].  
 

The rest of the paper is organized as follows. In Sect. 2, the methodology of the algorithms 
is explained. In Sect. 3, experimental setup and results are discussed. In Sect. 4, the outcome of 
the experiments is analyzed. Section 5 contains short conclusions. 

2. Methodology 
In literature, there are many ways to construct decision trees i.e., ant colony algorithms, 

genetic algorithms, greedy algorithms, branch and bound techniques but an expansion of 
dynamic programming is used in this paper, which gives all possible decision trees under 
consideration. In this section, the construction of directed acyclic graph (DAG) has been 
described first and then, the extraction of decision trees is demonstrated, then the BOO is 
explained and finally, the three algorithms are described. 
 
 

2.1 Building of Decision Trees 
The algorithm (described in [1, 2, 6]) is used for the construction of a DAG based on the 

expansion of the dynamic programming (DP). Normally, the goal of the DP is to find an 
optimal solution. Using this expansion of DP, a DAG is constructed, which describes all 
decision trees for the decision table under consideration, and later, based on this DAG, another 
algorithm is considered for the BOO of decision trees for the decision table under 
consideration relative to two different parameters. For example, a decision table TB is shown 
in Table 2 and corresponding DAG in Fig. 1. 
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Table 2. An example of a decision table TB 
𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐  

0 0 1 

0 1 3 

1 0 1 

1 1 2 

 
 

 
Fig. 1. The DAG for the table TB 

 
After constructing the DAG, all decision trees for the table under consideration can be 

found. Fig. 2 shows the two possible comprehensive decision trees (the first one by the root 
𝑓𝑓1 and the second tree by the root 𝑓𝑓2) for the table TB in Table 2. Even though the time 
complexity of the construction of the DAG is exponential in the worst case depending on the 
size of the table, it is still possible to use this method for small to middle-sized decision tables 
[1, 2, 6]. 
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There are many ways to split or partition the tables into subtables. Each value splits are 

considered in paper [3] which is applicable for categorical attributes only. In this paper, binary 
splits are considered as like in CART [13]. These trees are called CL-trees. This technique is 
suitable for decision tables containing numerical as well as categorical attributes. 
 

  

Fig. 2. Two decision trees derived from the DAG in Fig. 1 
 

2.2 CL-Trees 
For CL-trees, an optimal partition is used for some attributes at each non-terminal vertex. 

But, the standard CART algorithm utilizes an optimal partition for all considered attributes at 
each non-terminal vertex. Based on this approach, a larger collection of decision trees can be 
obtained.  

 
Let us consider 𝑓𝑓1, … ,𝑓𝑓𝑚𝑚 attributes (either numerical or categorical) and decision attribute 

i.e., label (categorical) for a given decision table TB. Each attribute 𝑓𝑓𝑚𝑚 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) is converted 
into binary attribute (as in CART) using binary partition.  

 
In case if the attribute 𝑓𝑓𝑚𝑚  is categorical, the set of its’ values B is partitioned into two 

nonempty subsets 𝐵𝐵1 and 𝐵𝐵0. The partition t is considered as 0 if the set 𝐵𝐵0 contains the 𝑓𝑓𝑚𝑚’s 
value and 1 otherwise. But if the attribute 𝑓𝑓𝑚𝑚 is numerical, then it is converted to a binary 
attribute by comparing with a real threshold 𝛼𝛼. The partition t is considered as 0 if 𝑓𝑓𝑚𝑚’s value is 
smaller compare to 𝛼𝛼, and 1 otherwise. As a result of the partition t, two subtables 𝑇𝑇𝐵𝐵𝑚𝑚=0 and 
𝑇𝑇𝐵𝐵𝑚𝑚=1are obtained. 

 
Gini index was used as an uncertainty parameter (U) in [1], whereas, in this paper “abs” [2] 

is used as an uncertainty parameter (U). The impurity function is considered as a quality index 
for partition. Let assume after partition t for the table TB, two subtables  𝑇𝑇𝐵𝐵𝑚𝑚=0 and 𝑇𝑇𝐵𝐵𝑚𝑚=1 are 
obtained. Then, the impurity function, I(TB, t), can be calculated by the weighted sum of U of 
two such subtables (note that the weights are in proportion to the total objects (rows) in the 
corresponding subtables). If the partition t is applied for the attribute 𝑓𝑓𝑚𝑚 in TB that produces 
minimum impurity function I(TB, t), then this partition is called the best partition for the 
attribute 𝑓𝑓𝑚𝑚. 
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Every terminal vertex is tagged by a decision attribute i.e., label in CL-trees for TB. Every 
non-terminal vertex is tagged by a partition based on one of the attributes. Also, two arcs are 
departing from this non-terminal vertex (one is labeled with 0 and another with 1). Let assume 
𝑇𝑇𝑇𝑇 is a decision tree and v is a vertex of it. Then, a subtable 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣) for the given table TB 
can be mapped for each vertex v. This subtable 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣) comprises all objects (rows) of the 
given table TB for which the work of the decision tree will be carried out on the vertex v. Our 
tree is built upon a few assumptions:   

1. For each non-terminal vertex v, 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣) comprises objects (rows) with non-identical 
labels. Furthermore, the vertex v is tagged by a best split for a non-constant attribute 𝑓𝑓𝑚𝑚 
on 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣). 

2. For each terminal vertex v, the vertex is tagged with a most frequent label. This is a 
decision which is bound with the largest amount of objects (rows) in the corresponding 
subtable. 

 

2.3 Bi-objective Optimization (BOO) and Pareto Fronts 
BOO considers the optimization of two objective functions simultaneously. In this paper, 

the idea is to optimize both number of nodes and number of misclassification of the tree 
simultaneously. For this purpose, the algorithm APOPs [1, 2, 6] has been used.  

 
Let us consider a point (𝑟𝑟, 𝑠𝑠) in 𝑋𝑋 (where 𝑋𝑋 is a finite set of points in 2D space). This point 

is defined as a Pareto optimal point (POP) for 𝑋𝑋 if no point (𝑝𝑝, 𝑞𝑞) in 𝑋𝑋 (where 𝑝𝑝 ≤  𝑟𝑟 and 
𝑞𝑞 ≤ 𝑠𝑠) such that (𝑟𝑟, 𝑠𝑠) ≠ (𝑝𝑝, 𝑞𝑞) [1, 2, 6]. A sample example is given in Fig. 3 for illustration 
purposes. The collection of POPs for a particular problem is called the Pareto front of the 
problem. 
 

 
Fig. 3. An example of Pareto front in 2D space 
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2.4 Three Algorithms 
The main idea is to use the algorithm APOPs  [1, 2, 6] which, for a given decision table, 

constructs the collection of POPs for the problem of BOO of CL-trees proportionate to the 
parameters NN and GM (see, for example, Fig. 4 (a), (c), (e)). This algorithm can be expanded 
to the construction of the collection of POPs for the problem of BOO of CL-trees 
proportionate to the parameters NN and LM (see, for example, Fig. 4 (b), (d), (f)). For each 
POP, a decision tree can be derived with values of the considered parameters equal to the 
coordinates of this point.  
 
 

  
(a) BALANCE-SCALE, NN and GM (b) BALANCE-SCALE, NN and LM 

 

  
(c) CARS, NN and GM (d) CARS, NN and LM 



4014                                        Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits 

  
(e) HOUSE-VOTES, NN and GM (f) HOUSE-VOTES, NN and LM 

 
Fig. 4. Pareto front for decision tables BALANCE-SCALE, CARS, 
and HOUSE-VOTES for pairs of parameters NN, GM and NN, LM 

 
Below three algorithms for decision tree construction are described based on the use of the 

algorithm APOPs and its expansion which time complexity in the worst case is exponential. 
Consequently, the complexity of the below algorithms in the worst case is exponential as well. 

 
 

2.4.1 GM Algorithm 
 

For a given decision table TB, the set of POPs is constructed using the algorithm APOPs for 
the problem of BOO of CL-trees proportionate to the parameters NN and GM. The coordinates 
of POPs are normalized: for each POP, the value of each coordinate is divided by the highest 
value (among all POPs) of the corresponding coordinate. After that, a normalized POP is 
chosen with the smallest distance (Euclidean distance) from the (0, 0) point. The coordinates 
of this point are restored and a decision tree 𝑇𝑇𝑇𝑇 is derived, for which the values of the 
parameters NN and GM are equal to the restored coordinates. The tree 𝑇𝑇𝑇𝑇  is the output of GM 
algorithm. Below is the pseudo code of the GM algorithm. 
 
GM Algorithm : Input: TB, Output: TR  

1. Begin 
2. Construct DAG for TB and Initialize, S, the set of POPs by using the  

Algorithm APOPs for BOO of CL-trees proportionate to the parameter NN 
and GM 

3. Normalize the coordinates of S 
4. Distancemin = -1  //Store the nearest distance to (0, 0) 
5. P (0, 0)// Store the point nearest to (0, 0) 
6. For each point (a, b) from S 
7. Distance Find the Euclidean distance from the origin (0, 0) 
8. If (Distance < Distancemin) // update the distance and point P 
9. Distancemin = Distance 
10. P (a, b) 
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11. End If 
12. End For 
13. Derive a decision tree TR from the DAG for the point P 
14. Return TR 
15. End 

 
 
2.4.2 LM Algorithm 

 
This algorithm works in the same way as GM algorithm but instead of the parameters NN 

and GM it uses the parameters NN and LM.  For a given decision table TB, the set of POPs is 
constructed using the expansion of the algorithm APOPs for the problem of BOO of CL-trees 
proportionate to the parameters NN and LM. Below is the pseudo code of the LM algorithm. 

 
 
LM Algorithm : Input: TB, Output: TR  

1. Begin 
2. Construct DAG for TB and Initialize, S, the set of POPs by using the  

Algorithm APOPs for BOO of CL-trees proportionate to the parameter NN 
and LM 

3. Normalize the coordinates of S 
4. Distancemin = -1  //Store the nearest distance to (0, 0) 
5. P (0, 0)// Store the point nearest to (0, 0) 
6. For each point (a, b) from S 
7. Distance Find the Euclidean distance from the origin (0, 0) 
8. If (Distance < Distancemin) // update the distance and point P 
9. Distancemin = Distance 
10. P (a, b) 
11. End If 
12. End For 
13. Derive a decision tree TR from the DAG for the point P 
14. Return TR 
15. End 

 
 
2.4.3 GLM Algorithm 
 

First, the GM algorithm is applied to a given decision table TB and a decision tree 𝑇𝑇𝑇𝑇1 is 
built. After that, using the algorithm APOPs the set of POPs is constructed for the parameters NN 
and LM. Then, a POP is chosen for which the value of the coordinate NN is closest to NN(𝑇𝑇𝑇𝑇1). 
At the end, a decision tree  𝑇𝑇𝑇𝑇2 is derived for which the values of the parameters NN and LM 
are equal to the  coordinates of the chosen POP. The tree 𝑇𝑇𝑇𝑇2 is the output of GLM algorithm. 
Below is the pseudo code of the GLM algorithm. 
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GLM Algorithm : Input: TB, Output: TR  

1. Begin 
2. Apply GM algorithm, TR1 GM(TB) 
3. NN1 NN (TR1) 
4. Construct DAG for TB and Initialize, S, the set of POPs by using the  

Algorithm APOPs for BOO of CL-trees proportionate to the parameter NN 
and LM 

5. Distancemin = -1  //Store the nearest distance to NN1 
6. P (0, 0)// Store the point nearest to NN1 
7. For each point (a, b) from S 
8. Distance Find the Euclidean distance from a to NN1 
9. If (Distance < Distancemin) // update the distance and point P 
10. Distancemin = Distance 
11. P (a, b) 
12. End If 
13. End For 
14. Derive a decision tree TR from the DAG for the point P 
15. Return TR 
16. End 

 

3. Experimental Evaluation 

3.1 Data sets 
The experiments have been performed on 14 decision tables from the UCI Machine 

Learning Repository [4] as portrayed in Table 3. The first column shows the name of the data 
set, the second column describes the number of rows, and the third column describes the 
number of attributes for the corresponding data set. 
 

Table 3. Data sets 
Name Rows Attributes 

BALANCE-SCALE  625 5 
BREAST-CANCER  266 10 
CARS 1728 7 
HAYES-ROTH  69 5 
HOUSE-VOTES  279 17 
IRIS 150 5 
LENSES  1 5 
LYMPHOGRAPHY  148 19 
NURSERY 12960 9 
SHUTTLE-LANDING  15 7 
SOYBEAN-SMALL 47 36 
SPECT-TEST 169 23 
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TIC-TAC-TOE 958 10 
ZOO 59 17 

 
3.2 Devices configuration 

The experiments were mainly performed on a Windows machine that has the following 
configurations: 

- Windows 7 operating system 
- Intel core processor 
- 128 GB RAM 

 
The DAGGER [5] software system has been used that is written in C++ programming 

language. It uses both parallel threads and processors using MPI to accomplish the tasks. 
 

3.3 Preprocessing of data sets 
It is necessary and essential to preprocess the decision tables. The first problem is having the 

missing values. It has been solved by changing each missing values with the value of the 
feature that is most frequently used. The second problem is having the conditional attributes 
that take singular value for each row. It is necessary to remove such attributes to continue the 
experiments. 
 

3.4 Experimental results 
For each considered data set, the three algorithms (GM algorithm, LM algorithm, and GLM 

algorithm) are applied to get the values of NN, GM, and LM of decision trees. The 
experimental results are depicted in the Table 4. First column shows the name of the data set, 
then the second column shows the results of GM algorithm, which is partitioned into three 
groups: the value of NN, then the value of GM, and finally the value of LM. The same has been 
shown for the LM and GLM algorithm. 
 

Table 4. Experimental results of three algorithms based on binary split 
Data  
Set 

GM algorithm LM algorithm GLM algorithm 
NN GM LM NN GM LM NN GM LM 

BALANCE-SCALE  43 0.14 0.5 53 0.16 0.2 41 0.1 0.22 
BREAST-CANCER  37 0.11 0.29 31 0.14 0.15 37 0.12 0.15 
CARS 29 0.06 0.34 71 0.05 0.13 29 0.14 0.21 
HAYES-ROTH  9 0.19 0.33 17 0.06 0.17 9 0.19 0.33 
HOUSE-VOTES  3 0.06 0.13 11 0.03 0.06 3 0.06 0.13 
IRIS 5 0.04 0.09 5 0.04 0.09 5 0.04 0.06 
LENSES  5 0.1 0.5 7 0 0 7 0 0 
LYMPHOGRAPHY  9 0.15 0.2 9 0.16 0.17 9 0.16 0.17 
NURSERY 37 0.08 0.34 35 0.1 0.17 35 0.1 0.17 
SHUTTLE-LANDING  5 0.2 0.25 7 0.13 0.18 5 0.2 0.25 
SOYBEAN-SMALL 5 0.21 0.37 5 0.21 0.32 5 0.21 0.32 
SPECT-TEST 17 0.02 0.07 19 0.02 0.02 17 0.02 0.03 
TIC-TAC-TOE 33 0.09 0.39 41 0.08 0.14 33 0.16 0.21 
ZOO 7 0.25 0.43 9 0.19 0.28 7 0.27 0.42 
Average 17.43 0.12 0.3 22.86 0.1 0.15 17.29 0.13 0.19 
SD 14.87 0.07 0.14 20.54 0.07 0.09 14.29 0.08 0.12 
At the end of the Table 4, the average and standard deviation (SD) are displayed. 
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In Table 5, the amount of improvement compared to the previous results [3] are shown. 
Here, ‘-’ shows the reduction or improvement of the parameter and ‘+’ shows the increment or 
non-improvement of the parameter. At the end of the table, the averaged and SD are displayed 
as well. 

 
Table 5. The improvement of results when applying binary splits compared to each value splits  (- 

shows the reduction and + shows the increment) 
Data  
Set 

GM algorithm LM algorithm GLM algorithm 
NN GM LM NN GM LM NN GM LM 

BALANCE-SCALE  -63 -0.04 +0.1 -133 +0.02 -0.04 -50 -0.12 -0.1 
BREAST-CANCER  -22 0.0 -0.04 -27 +0.01 -0.01 -21 -0.01 -0.01 
CARS -69 -0.02 -0.16 -267 +0.04 +0.05 -106 0.0 -0.08 
HAYES-ROTH  -14 +0.03 -0.17 -9 -0.07 -0.16 -17 +0.06 0.0 
HOUSE-VOTES  0 0.0 +0.01 0 0.0 0.0 0 0.0 0.0 
IRIS 0 0.0 0.0 0 0.0 0.0 0 0.0 -0.03 
LENSES  -1 0.0 0.0 -1 0.0 0 -1 0 0 
LYMPHOGRAPHY  -4 +0.02 -0.13 -2 0.0 -0.03 -2 0.0 -0.03 
NURSERY -37 0.0 0.0 -80 +0.01 -0.05 -35 0.0 -0.06 
SHUTTLE-LANDING  -2 0.0 -0.08 +2 -0.14 -0.13 0 -0.07 -0.06 
SOYBEAN-SMALL +2 -0.21 -0.18 +2 -0.22 -0.18 +2 -0.22 -0.18 
SPECT-TEST 0 0.0 -0.03 0 0.0 0.0 0 0.0 0.0 
TIC-TAC-TOE -39 -0.02 -0.07 -41 -0.04 -0.05 -39 +0.01 +0.01 
ZOO -1 +0.06 0.0 0 -0.01 0.0 -2 +0.07 +0.14 
Average -17.86 -0.01 -0.06 -39.71 -0.03 -0.04 -19.35 -0.02 -0.03 
SD 24.59 0.06 0.08 76.36 0.07 0.07 30.36 0.07 0.07 

4. Discussion 
 
The results demonstrate the clear advantage of using the binary splits compared to the each 

value splits in [3]. The number of nodes in the tree is smaller in this experiment, also the 
accuracy is reasonable. For example, for the data set “BALANCE-SCALE” and GM 
algorithm, the number of nodes was 106 for each-value splits but now it is only 43, the global 
error-rate was 0.18 but now it is only 0.14 even though the local error-rate is slightly increased 
from 0.4 to 0.5. As for the LM algorithm, the number of nodes was 186 for each-value splits 
but now it is only 53, the global error-rate was 0.14 but now it is a bit high 0.18 and the local 
error-rate has been decreased from 0.24 to 0.2. As for the GLM algorithm, the number of 
nodes was 91 for each-value splits but now it is only 41, the global error-rate was 0.22 but now 
it is much less 0.1 and the local error-rate has been decreased from 0.32 to 0.22.  

 
Another example that can be highlighted is the decision table “CARS”. For this case with 

GM algorithm, the number of nodes was 98 for each-value splits but now it is only 29, the 
global error-rate was 0.08 but now it is only 0.06 and the local error-rate is also decreased from 
0.5 to 0.34. As for the LM algorithm, the number of nodes was 338 for each-value splits but 
now it is only 71, the global error-rate was 0.01 but now it is a bit high 0.05, and the local 
error-rate has been increased from 0.08 to 0.13. As for the GLM algorithm, the number of 
nodes was 135 for each-value splits but now it is only 29, the global error-rate remains the 
same but the local error-rate has been decreased from 0.29 to 0.21. 
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Finally, the average of all decision tables for each combination has been calculated. For GM 

algorithm, the average number of nodes was before 35.29, which is now 17.43, the average 
GM was before 0.13, which is now 0.12, the average LM was before 0.36, which is now 0.3. 
For LM algorithm, the average number of nodes was before 62.57, which is now 22.86, the 
average GM was before 0.13, which is now 0.1, the average LM was before 0.19, which is now 
0.15. For GLM algorithm, the average number of nodes was before 36.64, which is now 17.29, 
the average GM was before 0.15, which is now 0.13, the average LM was before 0.22, which is 
now 0.19.    
 

It is possible to compare among the three algorithms built upon binary split. It is clear that 
that GLM algorithm have smaller NN, and competitive values of GM and LM. 
 

To compare the methods statistically, Friedman test with the corresponding Nemenyi 
post-hoc test as suggested in [24] has been employed. Let us consider M decision tables TB1, 
… , TBM  and k methods A1, … , Ak. For each corresponding decision table, we rank the 
methods A1, … , Ak based on their performance scores (the value of NN, GM or LM), where we 
assign the best performing method the rank 1, the next one rank 2, and so on (in case of tie, the 
average is taken). After that, the average of ranks for each method is calculated over the M 
decision tables. 

 
The evaluation of two methods is considered significantly different (assume a fixed 

significance level of α), when the corresponding average ranks is greater than the critical 
difference  
 

𝐶𝐶𝐶𝐶 =  𝑞𝑞𝛼𝛼�
𝑘𝑘(𝑘𝑘 + 1)

6𝑀𝑀
 

 
where 𝑞𝑞𝛼𝛼 is a critical value (depending on α and k) for the two-tailed Nemenyi test [24].  
 

In this work, the statistical tests are performed between binary and each value split for each 
algorithm.  Fig. 5,6,7. shows the CDD (Critical Difference Diagram) for significance level of 
α = 0.05. It illustrates the average rank for each method on the x-axis. In this diagram, if no 
significant variation among the considered methods is observed by the Nemenyi test, then the 
methods are clustered by a line. 
 

From Fig. 5, it is clear that, the best ranked algorithms are achieved by using the binary split 
when we minimize the NN parameter of the decision tree.  Furthermore, for the case of GM 
and GLM algorithms (Fig. 5(a) and (c)), the binary split are stastistically significant (different) 
than the counterpart of each value split.  
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(a) GM algorithm 

 
(b) LM algorithm 

 
(c) GLM algorithm 

 
Fig. 5. Critical difference diagram (CDD) between binary vs. each value split: for each algorithm and 

for the parameter NN 
 
 

From Fig. 6, it is clear that, the best ranked algorithms are achieved by using the binary split 
when we minimize the GM parameter of the decision tree.  But, for no any algorithms, the 
binary split are stastistically significant (different) than the counterpart of each value split.  
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(a) GM algorithm 

 
(b) LM algorithm 

 
(c) GLM algorithm 

Fig. 6. Critical difference diagram (CDD) between binary vs. each value split: for each algorithm and 
for the parameter GM 

 
 

From Fig. 7, it is clear that, the best ranked algorithms are achieved by using the binary split 
when we minimize the LM parameter of the decision tree.  Only for LM algorithm (Fig. 7(b)), 
the binary split are stastistically significant (different) than the counterpart of each value split.  
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(a) GM algorithm 

 
(b) LM algorithm 

 
(c) GLM algorithm 

 
Fig. 7. Critical difference diagram (CDD) between binary vs. each value split: for each algorithm and 

for the parameter LM 
 

Therefore, these results clearly show the advantages of the binary splits. 
 

5. Conclusion 
This paper demonstrates the application of BOO of global and local misclassification rate 

vs. number of nodes for many decision tables from UCI Machine Learning Repository. The 
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results are interestingly enough to see that number of nodes, global and local misclassification 
rates are much smaller for the case of binary splits in comparison with each-value splits. Also 
it is obvious that GLM algorithm performs well in comparison with other two GM and LM 
algorithms since it produces smaller NN and reasonable global and local misclassification 
rates. In future, it is possible to expand the designed algorithms to apply in multi-label decision 
tables [2, 6]. Furthermore, in the future the study regarding how to limit the number of 
branches of the constructed DAG will be carried out to overcome the problem of working with 
the big data. 
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