
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, Oct. 2020 4007
Copyright ⓒ 2020 KSII

The author would like to express the gratitude to Jouf University for the support of my research and give thanks to
Mikhail Moshkov for stimulative discussion and suggestion. The author also greatly appreciative to the anonymous
reviewers for useful remarks to improve the quality of the paper.

http://doi.org/10.3837/tiis.2020.10.005 ISSN : 1976-7277

Knowledge Representation Using
Decision Trees Constructed Based on

Binary Splits

Mohammad Azad*
College of Computer and Information Sciences,

Jouf University
Sakaka, 72441 – Saudi Arbia
[e-mail: mmazad@ju.edu.sa]

*Corresponding author: Mohammad Azad

Received January 8, 2020; revised June 10, 2019; accepted August 15, 2020;
published October 30, 2020

Abstract

It is tremendously important to construct decision trees to use as a tool for knowledge
representation from a given decision table. However, the usual algorithms may split the
decision table based on each value, which is not efficient for numerical attributes. The
methodology of this paper is to split the given decision table into binary groups as like the
CART algorithm, that uses binary split to work for both categorical and numerical attributes.
The difference is that it uses split for each attribute established by the directed acyclic graph in
a dynamic programming fashion whereas, the CART uses binary split among all considered
attributes in a greedy fashion. The aim of this paper is to study the effect of binary splits in
comparison with each value splits when building the decision trees. Such effect can be studied
by comparing the number of nodes, local and global misclassification rate among the
constructed decision trees based on three proposed algorithms.

Keywords: Knowledge representation, decision trees, binary split, directed acyclic graph

4008 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

1. Introduction

Decision trees can be used as a tool for knowledge representation that store information from
the given data table to solve problems in many domains including decision support systems,
machine learning, data mining, etc. Decision trees can be considered for optimization of its
parameters for various purposes. For example, when we consider the optimization of the depth
of tree, we match it with worst-case time complexity of algorithm (by simulating the tree as the
work of the algorithm). Similarly, we consider the optimization of the average depth and
number of nodes of tree by matching the average time complexity and space complexity of
algorithm. Therefore, it is very natural to not only consider single criterion but also
bi-objective optimization (BOO) of such different parameters. In the case of BOO, it is
necessary to study number of misclassification (#misclassifications) vs. number of nodes so
that the optimized tree can be useful for both prediction and well as shorter trees for
knowledge representation.

In this paper, the aim is to study BOO by comparing the following three cost functions of
the tree TR for a decision table (data set) TB (shown below in Table 1).

Table 1. Description of the three cost functions under study
Cost function Description
NN(TR) the number of nodes in TR for the table TB
GM(TB, TR) the global misclassification rate of TR for the table TB
LM(TB, TR) the local misclassification rate of TR for the table TB

The cost functions GM(TB, TR) and LM(TB, TR) has been mentioned first in [3]. GM(TB,
TR) is identical to the #misclassifications of TR on TB divided by the number of rows (#rows)
in TB. LM(TB, TR) is the maximum of (#𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚
) among all terminal nodes of TR on

TB. It is easy to manifest that GM(TB, TR) is at most LM(TB, TR)

As it is stated before that, the goal is to find a decision tree 𝑇𝑇𝑇𝑇 that has smaller number of

nodes as well as smaller # misclassifications. In [3], it is found that the global misclassification
rate may not be efficient cost function because #misclassifications may not be equally
dispersed. Besides, the proportion of #misclassifications can be big enough for a certain
terminal nodes. Therefore, the local misclassification rate is also very important.

Let us review the literature regarding the optimization associated with decision trees. Many
of such problems are NP-hard [9, 10, 23]. Nonetheless, many researchers have studied
approximate optimization techniques for decision trees (for example, genetic algorithms [15],
simulated annealing [17], and ant colony techniques [12]). Besides, other researchers have
studied the comprehensive algorithms for decision tree optimization (for example, brute-force
algorithms [19], dynamic programming [16, 18, 20], and branch-and-bound technique [14]).
However, none has studied in the direction of dynamic programming for bi-objective (and
multi-objective) optimization of decision trees except the authors of [1, 2]. Previously, the
authors [3] proposed three algorithms for BOO of decision tree based on expansion of
dynamic programming and studied the parameters NN, GM, and LM of the constructed
decision trees. Unfortunately, these algorithms are applicable to decision tables with

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4009

categorical attributes only. Another problem is that sometimes, the number of nodes in the
constructed decision trees is very large.

In this paper, two algorithms (GM and LM algorithms) have been designed for the

construction of decision trees, that can be suitable to middle-sized tables containing
categorical as well as numerical attributes. These algorithms are based on expansions of
dynamic programming — BOO of CART-like decision trees (CL-trees) [1, 2, 6, 13] relative to
the parameters NN and GM, and relative to the parameters NN and LM. In CL-trees, instead of
the initial attributes, binary splits have been used as it was done in the original CART
algorithm [13]. One more algorithm (GLM algorithm) is also designed which is the mixture of
the GM and LM algorithm. The considered algorithms have been applied to 14 decision tables
from the UCI Machine Learning Repository [4], and three parameters are studied NN, GM,
and LM of the constructed trees. Furthermore, the obtained results are compared with the
previous results in [3].

The obtained results show that the new algorithms produce decision trees containing on

average smaller number of nodes, smaller global misclassification rate as well as smaller local
misclassification rate for many decision tables. Therefore, the consideration of such
algorithms can be useful for the extraction of knowledge from middle-sized decision tables
and for its representation by decision trees. These algorithms can be used in different areas of
data analysis including rough set theory [21, 22].

The rest of the paper is organized as follows. In Sect. 2, the methodology of the algorithms
is explained. In Sect. 3, experimental setup and results are discussed. In Sect. 4, the outcome of
the experiments is analyzed. Section 5 contains short conclusions.

2. Methodology
In literature, there are many ways to construct decision trees i.e., ant colony algorithms,

genetic algorithms, greedy algorithms, branch and bound techniques but an expansion of
dynamic programming is used in this paper, which gives all possible decision trees under
consideration. In this section, the construction of directed acyclic graph (DAG) has been
described first and then, the extraction of decision trees is demonstrated, then the BOO is
explained and finally, the three algorithms are described.

2.1 Building of Decision Trees
The algorithm (described in [1, 2, 6]) is used for the construction of a DAG based on the

expansion of the dynamic programming (DP). Normally, the goal of the DP is to find an
optimal solution. Using this expansion of DP, a DAG is constructed, which describes all
decision trees for the decision table under consideration, and later, based on this DAG, another
algorithm is considered for the BOO of decision trees for the decision table under
consideration relative to two different parameters. For example, a decision table TB is shown
in Table 2 and corresponding DAG in Fig. 1.

4010 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

Table 2. An example of a decision table TB
𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐

0 0 1

0 1 3

1 0 1

1 1 2

Fig. 1. The DAG for the table TB

After constructing the DAG, all decision trees for the table under consideration can be

found. Fig. 2 shows the two possible comprehensive decision trees (the first one by the root
𝑓𝑓1 and the second tree by the root 𝑓𝑓2) for the table TB in Table 2. Even though the time
complexity of the construction of the DAG is exponential in the worst case depending on the
size of the table, it is still possible to use this method for small to middle-sized decision tables
[1, 2, 6].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4011

There are many ways to split or partition the tables into subtables. Each value splits are

considered in paper [3] which is applicable for categorical attributes only. In this paper, binary
splits are considered as like in CART [13]. These trees are called CL-trees. This technique is
suitable for decision tables containing numerical as well as categorical attributes.

Fig. 2. Two decision trees derived from the DAG in Fig. 1

2.2 CL-Trees
For CL-trees, an optimal partition is used for some attributes at each non-terminal vertex.

But, the standard CART algorithm utilizes an optimal partition for all considered attributes at
each non-terminal vertex. Based on this approach, a larger collection of decision trees can be
obtained.

Let us consider 𝑓𝑓1, … ,𝑓𝑓𝑚𝑚 attributes (either numerical or categorical) and decision attribute

i.e., label (categorical) for a given decision table TB. Each attribute 𝑓𝑓𝑚𝑚 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) is converted
into binary attribute (as in CART) using binary partition.

In case if the attribute 𝑓𝑓𝑚𝑚 is categorical, the set of its’ values B is partitioned into two

nonempty subsets 𝐵𝐵1 and 𝐵𝐵0. The partition t is considered as 0 if the set 𝐵𝐵0 contains the 𝑓𝑓𝑚𝑚’s
value and 1 otherwise. But if the attribute 𝑓𝑓𝑚𝑚 is numerical, then it is converted to a binary
attribute by comparing with a real threshold 𝛼𝛼. The partition t is considered as 0 if 𝑓𝑓𝑚𝑚’s value is
smaller compare to 𝛼𝛼, and 1 otherwise. As a result of the partition t, two subtables 𝑇𝑇𝐵𝐵𝑚𝑚=0 and
𝑇𝑇𝐵𝐵𝑚𝑚=1are obtained.

Gini index was used as an uncertainty parameter (U) in [1], whereas, in this paper “abs” [2]

is used as an uncertainty parameter (U). The impurity function is considered as a quality index
for partition. Let assume after partition t for the table TB, two subtables 𝑇𝑇𝐵𝐵𝑚𝑚=0 and 𝑇𝑇𝐵𝐵𝑚𝑚=1 are
obtained. Then, the impurity function, I(TB, t), can be calculated by the weighted sum of U of
two such subtables (note that the weights are in proportion to the total objects (rows) in the
corresponding subtables). If the partition t is applied for the attribute 𝑓𝑓𝑚𝑚 in TB that produces
minimum impurity function I(TB, t), then this partition is called the best partition for the
attribute 𝑓𝑓𝑚𝑚.

4012 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

Every terminal vertex is tagged by a decision attribute i.e., label in CL-trees for TB. Every
non-terminal vertex is tagged by a partition based on one of the attributes. Also, two arcs are
departing from this non-terminal vertex (one is labeled with 0 and another with 1). Let assume
𝑇𝑇𝑇𝑇 is a decision tree and v is a vertex of it. Then, a subtable 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣) for the given table TB
can be mapped for each vertex v. This subtable 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣) comprises all objects (rows) of the
given table TB for which the work of the decision tree will be carried out on the vertex v. Our
tree is built upon a few assumptions:

1. For each non-terminal vertex v, 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣) comprises objects (rows) with non-identical
labels. Furthermore, the vertex v is tagged by a best split for a non-constant attribute 𝑓𝑓𝑚𝑚
on 𝑇𝑇𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑣𝑣).

2. For each terminal vertex v, the vertex is tagged with a most frequent label. This is a
decision which is bound with the largest amount of objects (rows) in the corresponding
subtable.

2.3 Bi-objective Optimization (BOO) and Pareto Fronts
BOO considers the optimization of two objective functions simultaneously. In this paper,

the idea is to optimize both number of nodes and number of misclassification of the tree
simultaneously. For this purpose, the algorithm APOPs [1, 2, 6] has been used.

Let us consider a point (𝑟𝑟, 𝑠𝑠) in 𝑋𝑋 (where 𝑋𝑋 is a finite set of points in 2D space). This point

is defined as a Pareto optimal point (POP) for 𝑋𝑋 if no point (𝑝𝑝, 𝑞𝑞) in 𝑋𝑋 (where 𝑝𝑝 ≤ 𝑟𝑟 and
𝑞𝑞 ≤ 𝑠𝑠) such that (𝑟𝑟, 𝑠𝑠) ≠ (𝑝𝑝, 𝑞𝑞) [1, 2, 6]. A sample example is given in Fig. 3 for illustration
purposes. The collection of POPs for a particular problem is called the Pareto front of the
problem.

Fig. 3. An example of Pareto front in 2D space

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4013

2.4 Three Algorithms
The main idea is to use the algorithm APOPs [1, 2, 6] which, for a given decision table,

constructs the collection of POPs for the problem of BOO of CL-trees proportionate to the
parameters NN and GM (see, for example, Fig. 4 (a), (c), (e)). This algorithm can be expanded
to the construction of the collection of POPs for the problem of BOO of CL-trees
proportionate to the parameters NN and LM (see, for example, Fig. 4 (b), (d), (f)). For each
POP, a decision tree can be derived with values of the considered parameters equal to the
coordinates of this point.

(a) BALANCE-SCALE, NN and GM (b) BALANCE-SCALE, NN and LM

(c) CARS, NN and GM (d) CARS, NN and LM

4014 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

(e) HOUSE-VOTES, NN and GM (f) HOUSE-VOTES, NN and LM

Fig. 4. Pareto front for decision tables BALANCE-SCALE, CARS,
and HOUSE-VOTES for pairs of parameters NN, GM and NN, LM

Below three algorithms for decision tree construction are described based on the use of the

algorithm APOPs and its expansion which time complexity in the worst case is exponential.
Consequently, the complexity of the below algorithms in the worst case is exponential as well.

2.4.1 GM Algorithm

For a given decision table TB, the set of POPs is constructed using the algorithm APOPs for
the problem of BOO of CL-trees proportionate to the parameters NN and GM. The coordinates
of POPs are normalized: for each POP, the value of each coordinate is divided by the highest
value (among all POPs) of the corresponding coordinate. After that, a normalized POP is
chosen with the smallest distance (Euclidean distance) from the (0, 0) point. The coordinates
of this point are restored and a decision tree 𝑇𝑇𝑇𝑇 is derived, for which the values of the
parameters NN and GM are equal to the restored coordinates. The tree 𝑇𝑇𝑇𝑇 is the output of GM
algorithm. Below is the pseudo code of the GM algorithm.

GM Algorithm : Input: TB, Output: TR

1. Begin
2. Construct DAG for TB and Initialize, S, the set of POPs by using the

Algorithm APOPs for BOO of CL-trees proportionate to the parameter NN
and GM

3. Normalize the coordinates of S
4. Distancemin = -1 //Store the nearest distance to (0, 0)
5. P (0, 0)// Store the point nearest to (0, 0)
6. For each point (a, b) from S
7. Distance Find the Euclidean distance from the origin (0, 0)
8. If (Distance < Distancemin) // update the distance and point P
9. Distancemin = Distance
10. P (a, b)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4015

11. End If
12. End For
13. Derive a decision tree TR from the DAG for the point P
14. Return TR
15. End

2.4.2 LM Algorithm

This algorithm works in the same way as GM algorithm but instead of the parameters NN

and GM it uses the parameters NN and LM. For a given decision table TB, the set of POPs is
constructed using the expansion of the algorithm APOPs for the problem of BOO of CL-trees
proportionate to the parameters NN and LM. Below is the pseudo code of the LM algorithm.

LM Algorithm : Input: TB, Output: TR

1. Begin
2. Construct DAG for TB and Initialize, S, the set of POPs by using the

Algorithm APOPs for BOO of CL-trees proportionate to the parameter NN
and LM

3. Normalize the coordinates of S
4. Distancemin = -1 //Store the nearest distance to (0, 0)
5. P (0, 0)// Store the point nearest to (0, 0)
6. For each point (a, b) from S
7. Distance Find the Euclidean distance from the origin (0, 0)
8. If (Distance < Distancemin) // update the distance and point P
9. Distancemin = Distance
10. P (a, b)
11. End If
12. End For
13. Derive a decision tree TR from the DAG for the point P
14. Return TR
15. End

2.4.3 GLM Algorithm

First, the GM algorithm is applied to a given decision table TB and a decision tree 𝑇𝑇𝑇𝑇1 is
built. After that, using the algorithm APOPs the set of POPs is constructed for the parameters NN
and LM. Then, a POP is chosen for which the value of the coordinate NN is closest to NN(𝑇𝑇𝑇𝑇1).
At the end, a decision tree 𝑇𝑇𝑇𝑇2 is derived for which the values of the parameters NN and LM
are equal to the coordinates of the chosen POP. The tree 𝑇𝑇𝑇𝑇2 is the output of GLM algorithm.
Below is the pseudo code of the GLM algorithm.

4016 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

GLM Algorithm : Input: TB, Output: TR

1. Begin
2. Apply GM algorithm, TR1 GM(TB)
3. NN1 NN (TR1)
4. Construct DAG for TB and Initialize, S, the set of POPs by using the

Algorithm APOPs for BOO of CL-trees proportionate to the parameter NN
and LM

5. Distancemin = -1 //Store the nearest distance to NN1
6. P (0, 0)// Store the point nearest to NN1
7. For each point (a, b) from S
8. Distance Find the Euclidean distance from a to NN1
9. If (Distance < Distancemin) // update the distance and point P
10. Distancemin = Distance
11. P (a, b)
12. End If
13. End For
14. Derive a decision tree TR from the DAG for the point P
15. Return TR
16. End

3. Experimental Evaluation

3.1 Data sets
The experiments have been performed on 14 decision tables from the UCI Machine

Learning Repository [4] as portrayed in Table 3. The first column shows the name of the data
set, the second column describes the number of rows, and the third column describes the
number of attributes for the corresponding data set.

Table 3. Data sets
Name Rows Attributes

BALANCE-SCALE 625 5
BREAST-CANCER 266 10
CARS 1728 7
HAYES-ROTH 69 5
HOUSE-VOTES 279 17
IRIS 150 5
LENSES 1 5
LYMPHOGRAPHY 148 19
NURSERY 12960 9
SHUTTLE-LANDING 15 7
SOYBEAN-SMALL 47 36
SPECT-TEST 169 23

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4017

TIC-TAC-TOE 958 10
ZOO 59 17

3.2 Devices configuration

The experiments were mainly performed on a Windows machine that has the following
configurations:

- Windows 7 operating system
- Intel core processor
- 128 GB RAM

The DAGGER [5] software system has been used that is written in C++ programming

language. It uses both parallel threads and processors using MPI to accomplish the tasks.

3.3 Preprocessing of data sets
It is necessary and essential to preprocess the decision tables. The first problem is having the

missing values. It has been solved by changing each missing values with the value of the
feature that is most frequently used. The second problem is having the conditional attributes
that take singular value for each row. It is necessary to remove such attributes to continue the
experiments.

3.4 Experimental results
For each considered data set, the three algorithms (GM algorithm, LM algorithm, and GLM

algorithm) are applied to get the values of NN, GM, and LM of decision trees. The
experimental results are depicted in the Table 4. First column shows the name of the data set,
then the second column shows the results of GM algorithm, which is partitioned into three
groups: the value of NN, then the value of GM, and finally the value of LM. The same has been
shown for the LM and GLM algorithm.

Table 4. Experimental results of three algorithms based on binary split
Data
Set

GM algorithm LM algorithm GLM algorithm
NN GM LM NN GM LM NN GM LM

BALANCE-SCALE 43 0.14 0.5 53 0.16 0.2 41 0.1 0.22
BREAST-CANCER 37 0.11 0.29 31 0.14 0.15 37 0.12 0.15
CARS 29 0.06 0.34 71 0.05 0.13 29 0.14 0.21
HAYES-ROTH 9 0.19 0.33 17 0.06 0.17 9 0.19 0.33
HOUSE-VOTES 3 0.06 0.13 11 0.03 0.06 3 0.06 0.13
IRIS 5 0.04 0.09 5 0.04 0.09 5 0.04 0.06
LENSES 5 0.1 0.5 7 0 0 7 0 0
LYMPHOGRAPHY 9 0.15 0.2 9 0.16 0.17 9 0.16 0.17
NURSERY 37 0.08 0.34 35 0.1 0.17 35 0.1 0.17
SHUTTLE-LANDING 5 0.2 0.25 7 0.13 0.18 5 0.2 0.25
SOYBEAN-SMALL 5 0.21 0.37 5 0.21 0.32 5 0.21 0.32
SPECT-TEST 17 0.02 0.07 19 0.02 0.02 17 0.02 0.03
TIC-TAC-TOE 33 0.09 0.39 41 0.08 0.14 33 0.16 0.21
ZOO 7 0.25 0.43 9 0.19 0.28 7 0.27 0.42
Average 17.43 0.12 0.3 22.86 0.1 0.15 17.29 0.13 0.19
SD 14.87 0.07 0.14 20.54 0.07 0.09 14.29 0.08 0.12
At the end of the Table 4, the average and standard deviation (SD) are displayed.

4018 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

In Table 5, the amount of improvement compared to the previous results [3] are shown.
Here, ‘-’ shows the reduction or improvement of the parameter and ‘+’ shows the increment or
non-improvement of the parameter. At the end of the table, the averaged and SD are displayed
as well.

Table 5. The improvement of results when applying binary splits compared to each value splits (-

shows the reduction and + shows the increment)
Data
Set

GM algorithm LM algorithm GLM algorithm
NN GM LM NN GM LM NN GM LM

BALANCE-SCALE -63 -0.04 +0.1 -133 +0.02 -0.04 -50 -0.12 -0.1
BREAST-CANCER -22 0.0 -0.04 -27 +0.01 -0.01 -21 -0.01 -0.01
CARS -69 -0.02 -0.16 -267 +0.04 +0.05 -106 0.0 -0.08
HAYES-ROTH -14 +0.03 -0.17 -9 -0.07 -0.16 -17 +0.06 0.0
HOUSE-VOTES 0 0.0 +0.01 0 0.0 0.0 0 0.0 0.0
IRIS 0 0.0 0.0 0 0.0 0.0 0 0.0 -0.03
LENSES -1 0.0 0.0 -1 0.0 0 -1 0 0
LYMPHOGRAPHY -4 +0.02 -0.13 -2 0.0 -0.03 -2 0.0 -0.03
NURSERY -37 0.0 0.0 -80 +0.01 -0.05 -35 0.0 -0.06
SHUTTLE-LANDING -2 0.0 -0.08 +2 -0.14 -0.13 0 -0.07 -0.06
SOYBEAN-SMALL +2 -0.21 -0.18 +2 -0.22 -0.18 +2 -0.22 -0.18
SPECT-TEST 0 0.0 -0.03 0 0.0 0.0 0 0.0 0.0
TIC-TAC-TOE -39 -0.02 -0.07 -41 -0.04 -0.05 -39 +0.01 +0.01
ZOO -1 +0.06 0.0 0 -0.01 0.0 -2 +0.07 +0.14
Average -17.86 -0.01 -0.06 -39.71 -0.03 -0.04 -19.35 -0.02 -0.03
SD 24.59 0.06 0.08 76.36 0.07 0.07 30.36 0.07 0.07

4. Discussion

The results demonstrate the clear advantage of using the binary splits compared to the each

value splits in [3]. The number of nodes in the tree is smaller in this experiment, also the
accuracy is reasonable. For example, for the data set “BALANCE-SCALE” and GM
algorithm, the number of nodes was 106 for each-value splits but now it is only 43, the global
error-rate was 0.18 but now it is only 0.14 even though the local error-rate is slightly increased
from 0.4 to 0.5. As for the LM algorithm, the number of nodes was 186 for each-value splits
but now it is only 53, the global error-rate was 0.14 but now it is a bit high 0.18 and the local
error-rate has been decreased from 0.24 to 0.2. As for the GLM algorithm, the number of
nodes was 91 for each-value splits but now it is only 41, the global error-rate was 0.22 but now
it is much less 0.1 and the local error-rate has been decreased from 0.32 to 0.22.

Another example that can be highlighted is the decision table “CARS”. For this case with

GM algorithm, the number of nodes was 98 for each-value splits but now it is only 29, the
global error-rate was 0.08 but now it is only 0.06 and the local error-rate is also decreased from
0.5 to 0.34. As for the LM algorithm, the number of nodes was 338 for each-value splits but
now it is only 71, the global error-rate was 0.01 but now it is a bit high 0.05, and the local
error-rate has been increased from 0.08 to 0.13. As for the GLM algorithm, the number of
nodes was 135 for each-value splits but now it is only 29, the global error-rate remains the
same but the local error-rate has been decreased from 0.29 to 0.21.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4019

Finally, the average of all decision tables for each combination has been calculated. For GM

algorithm, the average number of nodes was before 35.29, which is now 17.43, the average
GM was before 0.13, which is now 0.12, the average LM was before 0.36, which is now 0.3.
For LM algorithm, the average number of nodes was before 62.57, which is now 22.86, the
average GM was before 0.13, which is now 0.1, the average LM was before 0.19, which is now
0.15. For GLM algorithm, the average number of nodes was before 36.64, which is now 17.29,
the average GM was before 0.15, which is now 0.13, the average LM was before 0.22, which is
now 0.19.

It is possible to compare among the three algorithms built upon binary split. It is clear that
that GLM algorithm have smaller NN, and competitive values of GM and LM.

To compare the methods statistically, Friedman test with the corresponding Nemenyi
post-hoc test as suggested in [24] has been employed. Let us consider M decision tables TB1,
… , TBM and k methods A1, … , Ak. For each corresponding decision table, we rank the
methods A1, … , Ak based on their performance scores (the value of NN, GM or LM), where we
assign the best performing method the rank 1, the next one rank 2, and so on (in case of tie, the
average is taken). After that, the average of ranks for each method is calculated over the M
decision tables.

The evaluation of two methods is considered significantly different (assume a fixed

significance level of α), when the corresponding average ranks is greater than the critical
difference

𝐶𝐶𝐶𝐶 = 𝑞𝑞𝛼𝛼�
𝑘𝑘(𝑘𝑘 + 1)

6𝑀𝑀

where 𝑞𝑞𝛼𝛼 is a critical value (depending on α and k) for the two-tailed Nemenyi test [24].

In this work, the statistical tests are performed between binary and each value split for each
algorithm. Fig. 5,6,7. shows the CDD (Critical Difference Diagram) for significance level of
α = 0.05. It illustrates the average rank for each method on the x-axis. In this diagram, if no
significant variation among the considered methods is observed by the Nemenyi test, then the
methods are clustered by a line.

From Fig. 5, it is clear that, the best ranked algorithms are achieved by using the binary split
when we minimize the NN parameter of the decision tree. Furthermore, for the case of GM
and GLM algorithms (Fig. 5(a) and (c)), the binary split are stastistically significant (different)
than the counterpart of each value split.

4020 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

(a) GM algorithm

(b) LM algorithm

(c) GLM algorithm

Fig. 5. Critical difference diagram (CDD) between binary vs. each value split: for each algorithm and

for the parameter NN

From Fig. 6, it is clear that, the best ranked algorithms are achieved by using the binary split
when we minimize the GM parameter of the decision tree. But, for no any algorithms, the
binary split are stastistically significant (different) than the counterpart of each value split.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4021

(a) GM algorithm

(b) LM algorithm

(c) GLM algorithm

Fig. 6. Critical difference diagram (CDD) between binary vs. each value split: for each algorithm and
for the parameter GM

From Fig. 7, it is clear that, the best ranked algorithms are achieved by using the binary split
when we minimize the LM parameter of the decision tree. Only for LM algorithm (Fig. 7(b)),
the binary split are stastistically significant (different) than the counterpart of each value split.

4022 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

(a) GM algorithm

(b) LM algorithm

(c) GLM algorithm

Fig. 7. Critical difference diagram (CDD) between binary vs. each value split: for each algorithm and

for the parameter LM

Therefore, these results clearly show the advantages of the binary splits.

5. Conclusion
This paper demonstrates the application of BOO of global and local misclassification rate

vs. number of nodes for many decision tables from UCI Machine Learning Repository. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020 4023

results are interestingly enough to see that number of nodes, global and local misclassification
rates are much smaller for the case of binary splits in comparison with each-value splits. Also
it is obvious that GLM algorithm performs well in comparison with other two GM and LM
algorithms since it produces smaller NN and reasonable global and local misclassification
rates. In future, it is possible to expand the designed algorithms to apply in multi-label decision
tables [2, 6]. Furthermore, in the future the study regarding how to limit the number of
branches of the constructed DAG will be carried out to overcome the problem of working with
the big data.

References

[1] AbouEisha, H., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., Extensions of Dynamic

Programming for Combinatorial Optimization and Data Mining, Intelligent Systems Reference
Library, Springer, vol. 146, 2019. Article (CrossRef Link)

[2] Alsolami, F., Azad, M., Chikalov, I., Moshkov, M., Decision and Inhibitory Trees and Rules for
Decision Tables with Many-valued Decisions, Intelligent Systems Reference Library, vol. 156.
Springer, 2020. Article (CrossRef Link)

[3] Azad, M., Chikalov, I., Moshkov, M., “Decision trees for knowledge representation,” in Proc. of
Ropiak, K., Polkowski, L., Artiemjew, P. (Eds.), 28th International Workshop on Concurrency,
Specification and Programming, CS&P 2019, Olsztyn, Poland, September 24–26, 2019.
Article (CrossRef Link)

[4] Dua, D., Graff, C., UCI Machine Learning Repository, University of California, Irvine, School of
Information and Computer Sciences, 2019. http://archive.ics.uci.edu/ml

[5] A. Alkhalid, T. Amin, I. Chikalov, S. Hussain, M. Moshkov, and B. Zielosko, “Dagger: A tool for
analysis and optimization of decision trees and rules,” in Proc. of Computational Informatics,
Social Factors and New Information Technologies: Hypermedia Perspectives and Avant-Garde
Experiences in the Era of Communicability Expansion. Blue Herons Editions, Bergamo, Italy, pp.
29-39, 2011. Article (CrossRef Link)

[6] Azad, M, Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions,
Doctoral Dissertation, King Abdullah University of Science & Technology, Thuwal, Saudi
Arabia), 2018. Retrieved from http://hdl.handle.net/10754/628023

[7] M. Azad, I. Chikalov, S. Hussain, and M. Moshkov., “Multi-pruning of decision trees for
knowledge representation and classification,” in Proc. of 3rd IAPR Asian Conference on Pattern
Recognition, ACPR 2015, Kuala Lumpur, Malaysia, November 3-6, 2015, pp. 604-608, 2015.
Article (CrossRef Link)

[8] Moret, B.M.E., Thomason, M.G., Gonzalez, R.C., “The activity of a variable and its relation to
decision trees,” ACM Trans. Program. Lang. Syst., 2(4), 580–595, 1980. Article (CrossRef Link)

[9] Hyafil, L.,Rivest, R.L., “Constructing optimal binary decision trees is NP-complete,” Inf. Process.
Lett., 5(1), 15–17, 1976. Article (CrossRef Link)

[10] Chikalov, I., Hussain, S., Moshkov, M., “Totally optimal decision trees for Boolean functions,”
Discret. Appl. Math., 215, 1–13, 2016. Article (CrossRef Link)

[11] Riddle, P., Segal, R., Etzioni, O., “Representation design and brute-force induction in a Boeing
manufacturing domain,” Appl. Artif. Intel., 8, 125–147, 1994. Article (CrossRef Link)

[12] Boryczka, U., Kozak, J., “New algorithms for generation decision trees – ant-miner and its
modifications,” Abraham A., Hassanien A.E, de Leon Ferreira de Carvalho A.C.P., Snásel V. (eds.)
Foundations of Computational Intelligence – Volume 6: Data Mining, pp. 229–262, 2009.
Article (CrossRef Link)

[13] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., Classification and Regression Trees,
Wadsworth and Brooks, Monterey, CA, 1984. Article (CrossRef Link)

[14] Breitbart, Y., Reiter, A., “A branch-and-bound algorithm to obtain an optimal evaluation tree for
monotonic boolean functions,” Acta Inf., 4, 311–319, 1975. Article (CrossRef Link)

https://doi.org/10.1007/978-3-319-91839-6
https://doi.org/10.1007/978-3-030-12854-8
http://ceur-ws.org/Vol-2571/CSP2019_paper_1.pdf
http://archive.ics.uci.edu/ml
https://dialnet.unirioja.es/servlet/articulo?codigo=6405671
http://hdl.handle.net/10754/628023
https://doi.org/10.1109/ACPR.2015.7486574
https://doi.org/10.1145/357114.357120
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/j.dam.2016.07.009
https://doi.org/10.1080/08839519408945435
https://doi.org/10.1007/978-3-642-01091-0_11
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/BF00289614

4024 Mohammad Azad:Knowledge Representation Using Decision Trees Constructed Based on Binary Splits

[15] Chai, B., Zhuang, X., Zhao, Y., Sklansky, J., “Binary linear decision tree with genetic algorithm,”
in Proc. of 13th International Conference on Pattern Recognition, ICPR 1996, Vienna, Austria,
August 25–29, vol. 4, pp. 530–534, 1996. Article (CrossRef Link)

[16] Garey, M.R., “Optimal binary identification procedures,” SIAM J. Appl. Math, 23(2), 173–186,
1972. Article (CrossRef Link)

[17] Heath, D.G., Kasif, S., Salzberg, S., “Induction of oblique decision trees,” in Proc. of Bajcsy R.
(ed.) 13th International Joint Conference on Artificial Intelligence, IJCAI 1993, Chambéry,
France, August 28–September 3, 1993, Morgan Kaufmann, pp. 1002–1007, 1993.
Article (CrossRef Link)

[18] Martelli, A., Montanari, U., “Optimizing decision trees through heuristically guided search,”
Commun. ACM, 21(12), 1025–1039, 1978. Article (CrossRef Link)

[19] Riddle, P., Segal, R., Etzioni, O., “Representation design and brute-force induction in a Boeing
manufacturing domain,” Appl. Artif. Intel, 8(1), 125–147, 1994. Article (CrossRef Link)

[20] Schumacher, H., Sevcik, K.C., “The synthetic approach to decision table conversion,” Commun.
ACM, 19(6), 343–351, 1976. Article (CrossRef Link)

[21] Pawlak, Z., Rough Sets — Theoretical Aspects of Reasoning About Data, Kluwer Academic
Publishers, Dordrecht, 1991. Article (CrossRef Link)

[22] Pawlak, Z., Skowron, A., “Rudiments of rough sets,” Inf. Sci., 177(1), 3-27, 2007.
Article (CrossRef Link)

[23] Moshkov, M., “Time complexity of decision trees,” Peters, J.F., Skowron, A. (eds.) Trans. Rough
Sets III. Lecture Notes in Computer Science, vol. 3400, pp. 244–459, 2005.
Article (CrossRef Link)

[24] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,” Journal of Machine
Learning Research, vol. 7, pp. 1–30, Dec. 2006. Article (CrossRef Link)

Mohammad Azad / https://orcid.org/0000-0001-9851-1420
Mohammad Azad obtained Ph.D. in Computer Science from King Abdullah University of
Science and Technology. Currently, he is working as an assistant professor in Jouf University,
Sakaka, Saudi Arabia at the college of Computer and Information Sciences. Dr. Azad is author
and/or coauthor of one research book published by Springer and over 35 journal and
conference papers. He is also working as a reviewer of many international journals.

https://doi.org/10.1109/ICPR.1996.547621
https://doi.org/10.1137/0123019
https://pdfs.semanticscholar.org/4d3f/466fa7e32ab8f11873778893c38558537975.pdf
https://doi.org/10.1145/359657.359664
https://doi.org/10.1080/08839519408945435
https://doi.org/10.1145/360238.360245
https://doi.org/10.1007/978-94-011-3534-4_7
https://doi.org/10.1016/j.ins.2006.06.003
https://doi.org/10.1007/11427834_12
https://jmlr.csail.mit.edu/papers/v7/demsar06a

