참고문헌
- American Water Works Association. (1999). American national standard for polyethylene encasement for ductile-iron pipe systems.
- Bae, C.H., Kim, J.H., Park, S.Y., Kim, J.H., Hong, S.H. and Lee, K.J. (2006). Assessment of soil characteristics on external corrosion of water pipes, J. Korean Soc. Water Wastewater, 20(5), 737-745.
- Booth, G.H. and Tiller, A.K. (1962). Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 3.-Halophilic organisms, Trans. Faraday Soc, 58, 2510-2516. https://doi.org/10.1039/TF9625802510
- Buechel, F.F. and Pappas, M.J. (2015). Principles of human joint replacement: design and clinical application.
- Chung, W.S., Lee, H.D., Yu, M.J. and Kwak, P.J. (2001). Evaluation of external corrosion on the drinking water pipelines using soil corrosive parameters, J. Korean Soc. Environ. Eng., 23(10), 1611-1620.
- Collins, J.A. (1993). Failure of materials in mechanical design: analysis, prediction, prevention. John Wiley & Sons.
- Gupta, S.K. and Gupta, B.K. (1979). The critical soil moisture content in the underground corrosion of mild steel, Corros. Sci., 19(3), 171-178. https://doi.org/10.1016/0010-938X(79)90015-5
- Hamilton, H.L. (1960). Effects of Soil Corrosion on Cast-Iron Pipe, J. Am. Water Works Assoc., 52(5), 638-650. https://doi.org/10.1002/j.1551-8833.1960.tb00515.x
- Javaherdashti, R. (1999). A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future, Anti-Corros. Method. M., 46, 173-180. https://doi.org/10.1108/00035599910273142
- Javed, M.A., Stoddart, P.R. and Wade, S.A. (2015). Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions, Corros. Sci., 93, 48-57. https://doi.org/10.1016/j.corsci.2015.01.006
- Kim, J., Choi, D., Lee, H., Sung, K., Kim, S., Kim, J. and Kim, Y. Korea Water Resources Corporation. (2002). Effective evaluation of deterioration through the internal and external examination in water mains, 35.
- Li, S.Y., Kim, Y.G., Jeon, K.S., Kho, Y.T. and Kang, T. (2001). Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil, Corrosion, 57(9), 815-828. https://doi.org/10.5006/1.3280616
- Malvin, R. (1958). Underground corrosion: Part I: Corrosion mechanism of metals in soil, Anti-Corros. Method. M., 5(1), 5-9. https://doi.org/10.1108/eb019420
- Moore, T.J. and Hallmark, C.T. (1987). Soil properties influencing corrosion of steel in Texas soils, Soil Sci. Soc. Am. J., 51(5), 1250-1256. https://doi.org/10.2136/sssaj1987.03615995005100050029x
- Murray, J.N. and Moran, P.J. (1989). Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy, Corrosion, 45(1), 34-43. https://doi.org/10.5006/1.3577885
- Noor, E.A. and Al-Moubaraki, A.H. (2014). Influence of soil moisture content on the corrosion behavior of X60 steel in different soils, Arab. J. Sci. Eng., 39(7), 5421-5435. https://doi.org/10.1007/s13369-014-1135-2
- Norin, M. and Vinka, T.G. (2003). Corrosion of carbon steel in filling material in an urban environment, Mater. Corros., 54(9), 641-651. https://doi.org/10.1002/maco.200303680
- Rajani, B. (2000). Investigation of grey cast iron water mains to develop a methodology for estimating service life. American Water Works Association.
- Rajani, B. and Makar, J. (2000). A methodology to estimate remaining service life of grey cast iron water mains, Can. J. Civ. Eng., 27(6), 1259-1272. https://doi.org/10.1139/cjce-27-6-1259
- Schwerdtfeger, W. J. (1954). Laboratory measurement of the corrosion of ferrous metals in soils, Corrosion, 10(1), 30-36. https://doi.org/10.5006/0010-9312-10.1.30
- Soltani Asadi, Z. and Melchers, R.E. (2018). Long-term external pitting and corrosion of buried cast iron water pipes, Corros. Eng. Sci. Technol., 53(2), 93-101. https://doi.org/10.1080/1478422X.2017.1400291
- Yan, M., Sun, C., Xu, J., Dong, J. and Ke, W. (2014). Role of Fe oxides in corrosion of pipeline steel in a red clay soi, Corros. Sci., 80, 309-317. https://doi.org/10.1016/j.corsci.2013.11.037