References
- Brown, R.K., Harnisch, F., Wirth, S., Wahlandt, H., Dockhorn, T., Dichtl, N. and Schroder, U. (2014). Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell, Bioresour. Technol., 163, 206-213. https://doi.org/10.1016/j.biortech.2014.04.044
- Campecino, J., Lagishetty, S., Wawrzak, Z., Alfaro, V. S., Lehnert, N., Reguera, G., Hu, J. and Hegg, E.L. (2020). Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclass, J. Biol. Chem., jbc, RA120, 013981.
- Chai, H., Koo, B., Son, S. and Jung, S.P. (2020). Validity and Reproducibility of Various Linear Sweep Voltammetry Tests of Anode and Cathode Electrodes in Microbial Electrolysis Cells.
- Choi, T.S., Song, Y.C. and Joicy, A. (2018). Influence of conductive material on the bioelectrochemical removal of organic matter and nitrogen from low strength wastewater, Bioresour. Technol., 259, 407-413. https://doi.org/10.1016/j.biortech.2018.03.049
- Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D., Cornell, S., Dentener, F., Galloway, J. and Ganeshram, R.S. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean, science, 320(5878), 893-897. https://doi.org/10.1126/science.1150369
- Eaktasang, N., Kang, C.S., Ryu, S.J., Suma, Y. and Kim, H.S. (2013). Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell, Environ. Eng. Res., 18(4), 277-281. https://doi.org/10.4491/eer.2013.18.4.277
- Feng, Q., Song, Y. C., Li, J., Wang, Z. and Wu, Q. (2020). Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production, Environ. Res., 109867. https://doi.org/10.1016/j.envres.2020.109867
- Gregory, K.B., Bond, D.R. and Lovley, D.R. (2004). Graphite electrodes as electron donors for anaerobic respiration, Environ. Microbiol., 6(6), 596-604. https://doi.org/10.1111/j.1462-2920.2004.00593.x
- Haque, N., Cho, D. and Kwon, S. (2014). Performances of metallic (sole, composite) and non-metallic anodes to harness power in sediment microbial fuel cells, Environ. Eng. Res., 19(4), 363-367. https://doi.org/10.4491/eer.2014.056
- Hassan, M., Zhu, G., LU, Y.Z., AL-Falahi, A.H., LU, Y., Huang, S. and Wan, Z. (2020). Removal of antibiotics from wastewater and its problematic effects on microbial communities by bioelectrochemical Technology: Current knowledge and future perspectives, Environ. Eng. Res., 26(1), 190405.
- Jang, J.K., Kim, K.M., Byun, S., Ryou, Y.S., Chang, I.S., Kang, Y. K. and Kim, Y.H. (2014). Current generation from microbial fuel cell using stainless steel wire as anode electrode, J. Korean Soc. Environ. Eng., 36(11), 753-757. https://doi.org/10.4491/KSEE.2014.36.11.753
- Jetten, M.S., Niftrik, L.V., Strous, M., Kartal, B., Keltjens, J.T. and Op den Camp, H. J. (2009). Biochemistry and molecular biology of anammox bacteria, Crit. Rev. Biochem. Mol. Biol., 44(2-3), 65-84. https://doi.org/10.1080/10409230902722783
- Joicy, A., Song, Y.C., Yu, H. and Chae, K.J. (2019). Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field, J. Environ. Manag., 250, 109517. https://doi.org/10.1016/j.jenvman.2019.109517
- Jung, S., Mench, M.M. and Regan, J.M. (2011). Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH, Environ. Sci. Technol., 45(20), 9069-9074. https://doi.org/10.1021/es201737g
- Jung, S. and Regan, J.M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Appl. Microbiol. Biotechnol., 77(2), 393-402. https://doi.org/10.1007/s00253-007-1162-y
- Jung, S.P., Kim, E. and Koo, B. (2018). Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells, Chemosphere, 209, 542-550. https://doi.org/10.1016/j.chemosphere.2018.06.070
- Kamel, M.S., Abd-Alla, M.H., Abdul-Raouf, U.M., Kamel, M.S., Abd-Alla, M. H. and Abdul-Raouf, U.M. (2019). Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell, Environ. Eng. Res., 25(6), 862-870. https://doi.org/10.4491/eer.2019.412
- Kang, H., Jeong, J., Gupta, P. L. and Jung, S.P. (2017). Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells, Int. J. Hydrog. Energy, 42(45), 27693-27700. https://doi.org/10.1016/j.ijhydene.2017.06.181
- Kartal, B., Van Niftrik, L., Sliekers, O., Schmid, M.C., Schmidt, I., Van De Pas-Schoonen, K., Cirpus, I., Van der Star, W., Van Loosdrecht, M. and Abma, W. (2004). Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria, Rev. Environ. Sci. Biotechnol., 3(3), 255-264. https://doi.org/10.1007/s11157-004-7247-5
- Kashima, H. and Regan, J.M. (2015). Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system, Environ. Sci. Technol., 49(5), 3195-3202. https://doi.org/10.1021/es504882f
- Kim, I.S., Chae, K.J., Choi, M.J. and Verstraete, W. (2008). Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation, Environ. Eng. Res., 13(2), 51-65. https://doi.org/10.4491/eer.2008.13.2.051
- Kim, T., Kang, S., Chang, I.S., Kim, H.W., Sung, J.H., Paek, Y., Kim, Y.H. and Jang, J.K. (2017). Prevention of power overshoot and reduction of cathodic overpotential by increasing cathode flow rate in microbial fuel cells used stainless steel scrubber electrode, J. Korean Soc. Environ. Eng., 39(10), 591-598. https://doi.org/10.4491/KSEE.2017.39.10.591
- Koo, B., Lee, S.M., Oh, S.E., Kim, E.J., Hwang, Y., Seo, D., Kim, J.Y., Kahng, Y.H., Lee, Y.W. and Chung, S.Y. (2019). Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance, Electrochim. Acta, 297, 613-622. https://doi.org/10.1016/j.electacta.2018.12.024
- Kuenen, J.G. (2008). Anammox bacteria: from discovery to application, Nat. Rev. Microbiol., 6(4), 320. https://doi.org/10.1038/nrmicro1857
- Kuntke, P., Sleutels, T.H.J.A., Saakes, M. and Buisman, C.J.N. (2014). Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell, Int. J. Hydrogen Energy, 39(10), 4771-4778. https://doi.org/10.1016/j.ijhydene.2013.10.089
- Lee, K.Y., Choi, I.K., Lim, K.H., Lee, K.Y., Choi, I.K. and Lim, K.H. (2018). Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells, Environ. Eng. Res., 24(3), 443-448. https://doi.org/10.4491/eer.2018.211
- Nam, J.Y., Kim, H.W., Lim, K.H. and Shin, H.S. (2010). Electricity generation from MFCs using differently grown anode-attached bacteria, Environ. Eng. Res., 15(2), 71-78. https://doi.org/10.4491/eer.2010.15.2.071
- Nam, J.Y., Moon, C., Jeong, E., Lee, W.T., Shin, H.S., Kim, H.W., Nam, J.Y., Moon, C., Jeong, E. and Lee, W.T. (2013). Optimal metal dose of alternative cathode catalyst considering organic substances in single chamber microbial fuel cells, Environ. Eng. Res., 18(3), 145-150. https://doi.org/10.4491/eer.2013.18.3.145
- Nam, T., Kang, H., Pandit, S., Kim, S.H., Yoon, S., Bae, S. and Jung, S.P. (2020). Effects of vertical and horizontal configurations of different numbers of brush anodes on performance and electrochemistry of microbial fuel cells, J. Clean. Prod., 124125. https://doi.org/10.1016/j.jclepro.2020.124125
- Nam, T., Son, S., Kim, E., Tran, H.V.H., Koo, B., Chai, H., Kim, J., Pandit, S., Gurung, A. and Oh, S.E. (2018). Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance, Environ. Eng. Res., 23(4), 383-389. https://doi.org/10.4491/eer.2017.171
- Nam, T., Son, S., Koo, B., Tran, H.V.H., Kim, J.R., Choi, Y. and Jung, S.P. (2017). Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials, Int. J. Hydrog. Energy, 42(45), 27677-27684. https://doi.org/10.1016/j.ijhydene.2017.07.180
- Pawar, A.A., Karthic, A., Pandit, S. and Jung, S.P. (2020). Electromethanogenesis using microbial electrolysis cells: Materials.
- Puig, S., Coma, M., Desloover, J., Boon, N., Colprim, J. and Balaguer, M.D. (2012). Autotrophic denitrification in microbial fuel cells treating low ionic strength waters, Environ. Sci. Technol., 46(4), 2309-2315. https://doi.org/10.1021/es2030609
- Puig, S., Serra, M., Vilar-Sanz, A., Cabre, M., Baneras, L., Colprim, J. and Balaguer, M.D. (2011). Autotrophic nitrite removal in the cathode of microbial fuel cells, Bioresour. Technol., 102(6), 4462-4467. https://doi.org/10.1016/j.biortech.2010.12.100
- Qiao, S., Yin, X., Zhou, J. and Furukawa, K. (2014). Inhibition and recovery of continuous electric field application on the activity of anammox biomass, Biodegradation, 25(4), 505-513. https://doi.org/10.1007/s10532-013-9677-7
- Rittmanand McCarty. (2001). E dan McCarty. 2001. Environmental Biotechnology: Principle and Apllications. In: McGraw Hill International Ed., New York.
- Savla, N., Pandit, S., Khanna, N., Mathuriya, A.S. and Jung, S.P. (2020). Microbially powered electrochemical systems coupled with membrane-based technology for sustainable desalination and efficient wastewater treatment, Environ. Eng. Res., 42(7), 360-380.
- Schroder, U., Harnisch, F. and Angenent, L.T. (2015). Microbial electrochemistry and technology: terminology and classification, Energy Environ. Sci., 8(2), 513-519. https://doi.org/10.1039/C4EE03359K
- Shin, W., Park, J., Lee, B., Kim, Y. and Jun, H. (2017). Evaluation of biogas production rate by using various electrodes materials in a combined anaerobic digester and microbial electrochemical technology (MET), J. Korean Soc. Environ. Eng., 39(2), 82-88. https://doi.org/10.4491/KSEE.2017.39.2.82
- Snoeyink, V.L., Jenkins, D. and Jenkins, D. (1980). Water chemistry. Wiley New York, 91.
- Song, Y.C., Joicy, A. and Jang, S.H. (2019). Direct interspecies electron transfer in bulk solution significantly contributes to bioelectrochemical nitrogen removal, Int. J. Hydrog. Energy, 44(4), 2180-2190. https://doi.org/10.1016/j.ijhydene.2018.08.188
- Tran, H.V., Kim, E., Koo, B., Sung, S. and Jung, S.P. (2020). Anode maturation time for attaining a mature anode biofilm and stable cell performance in a single chamber microbial fuel cell with a brush anode, Preprint.
- Vilajeliu-Pons, A., Koch, C., Balaguer, M. D., Colprim, J., Harnisch, F. and Puig, S. (2018). Microbial electricity driven anoxic ammonium removal, Water Res., 130, 168-175. https://doi.org/10.1016/j.watres.2017.11.059
- Villano, M., Scardala, S., Aulenta, F. and Majone, M. (2013). Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell, Bioresour. Technol., 130, 366-371. https://doi.org/10.1016/j.biortech.2012.11.080
- Virdis, B., Rabaey, K., Rozendal, R.A., Yuan, Z. and Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells, Water Res., 44(9), 2970-2980. https://doi.org/10.1016/j.watres.2010.02.022
- Wang, D., Han, H., Han, Y., Li, K. and Zhu, H. (2017). Enhanced treatment of Fischer-Tropsch (FT) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: effect of electric field, Bioresour. Technol., 232, 18-26. https://doi.org/10.1016/j.biortech.2017.02.010
- Wang, Z. and Lim, B. (2020). Electric power generation from sediment microbial fuel cells with graphite rod array anode, Environ. Eng. Res., 25(2), 238-242. https://doi.org/10.4491/eer.2018.361
- Wang, Z.J., Lim, B.S., Wang, Z.J. and Lim, B.S. (2016). Electric power generation from treatment of food waste leachate using microbial fuel cell, Environ. Eng. Res., 22(2), 157-161. https://doi.org/10.4491/eer.2016.061
- Wu, Y.C., Wu, H.J., Fu, H.Y., Dai, Z. and Wang, Z.J. (2019). Burial depth of anode affected the bacterial community structure of sediment microbial fuel cells, Environ. Eng. Res., 25(6), 870-876.
- Yan, H., Saito, T. and Regan, J.M. (2012). Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode, Water Res., 46(7), 2215-2224. https://doi.org/10.1016/j.watres.2012.01.050
- Yang, Y., Li, X., Yang, X. and He, Z. (2017). Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system, Bioresour. Technol., 238, 22-29. https://doi.org/10.1016/j.biortech.2017.04.022
- Yin, X., Qiao, S. and Zhou, J. (2016). Effects of cycle duration of an external electrostatic field on anammox biomass activity, Sci. Rep., 6, 19568. https://doi.org/10.1038/srep19568
- Yoon, H.S., Song, Y.C. and Choi, T.S. (2015). Improvement of anodic performance by using CTP binder containg nickel, J. Korean Soc. Environ. Eng., 37(9), 499-504. https://doi.org/10.4491/KSEE.2015.37.9.499
- Yu, Q., Xiong, W., Huang, D., Luo, C., Yang, Q., Guo, T., Wei, Q., Yu, Q., Xiong, W. and Huang, D. (2019). Cathodic reduction characteristics of 2-chloro-4-nitrophenol in microbial electrolysis cell, Environ. Eng. Res., 25(6), 854-861. https://doi.org/10.4491/eer.2019.387
- Zamora, P., Georgieva, T., Ter Heijne, A., Sleutels, T.H.J.A., Jeremiasse, A.W., Saakes, M., Buisman, C.J. N. and Kuntke, P. (2017). Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell, J. Power Sources, 356, 491-499. https://doi.org/10.1016/j.jpowsour.2017.02.089
- Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J. (2012). Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell, Bioresour. Technol., 116, 271-277. https://doi.org/10.1016/j.biortech.2012.02.131
- Zhan, G., Zhang, L., Tao, Y., Wang, Y., Zhu, X. and Li, D. (2014). Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems, Electrochim. Acta, 135, 345-350. https://doi.org/10.1016/j.electacta.2014.05.037
- Zhang, F. and He, Z. (2012). Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell, Process Biochem., 47(12), 2146-2151. https://doi.org/10.1016/j.procbio.2012.08.002
- Zhang, X., Zhu, F., Chen, L., Zhao, Q. and Tao, G. (2013). Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell, Bioresour. Technol., 146, 161-168. https://doi.org/10.1016/j.biortech.2013.07.024
- Zhu, T., Zhang, Y., Bu, G., Quan, X. and Liu, Y. (2016). Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential, Chem. Eng. J., 291, 184-191. https://doi.org/10.1016/j.cej.2016.01.099
Cited by
- [논문철회]MAP 결정화 적용을 위한 잉여슬러지의 인 및 암모니아의 거동 특성 vol.35, pp.1, 2020, https://doi.org/10.11001/jksww.2021.35.1.071
- Central Composite Design: a Response Surface Methodology Approach in Biodegradation of Textile Dye Wastewater vol.43, pp.6, 2020, https://doi.org/10.4491/ksee.2021.43.6.461
- Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation vol.424, 2020, https://doi.org/10.1016/j.cej.2021.130388