DOI QR코드

DOI QR Code

Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment

하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향

  • Chai, Hyungwon (Department of Environment and Energy Engineering, Chonnam National University) ;
  • Choi, Yonghoon (Department of Electrical Engineering, Chonnam National University) ;
  • Kim, Myeongwoon (Department of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Youngjin (Graduate School of Consulting, Kumoh National Institute of Technology) ;
  • Jung, Sokhee P. (Department of Environment and Energy Engineering, Chonnam National University)
  • 채형원 (전남대학교 환경에너지공학과) ;
  • 최용훈 (전남대학교 전기공학과) ;
  • 김명운 (대진대학교 에너지환경공학부) ;
  • 김영진 (국립금오공과대학교 컨설팅 대학원) ;
  • 정석희 (전남대학교 환경에너지공학과)
  • Received : 2020.09.08
  • Accepted : 2020.10.08
  • Published : 2020.10.15

Abstract

The removal of organic carbon and nutrients (i.e. N and P) from wastewater is essential for the protection of the water environment. Especially, nitrogen compounds cause eutrophication in the water environment, resulting in bad water quality. Conventional nitrogen removal systems require high aeration costs and additional organic carbon. Microbial electrochemical system (MES) is a sustainable environmental system that treats wastewater and produces energy or valuable chemicals by using microbial electrochemical reaction. Innovative and cost-effective nitrogen removal is feasible by using MESs and increasing attention has been given to the MES development. In this review, recent trends of MESs for nitrogen removal and their mechanism were conclusively reviewed and future research outlooks were also introduced.

Keywords

References

  1. Brown, R.K., Harnisch, F., Wirth, S., Wahlandt, H., Dockhorn, T., Dichtl, N. and Schroder, U. (2014). Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell, Bioresour. Technol., 163, 206-213. https://doi.org/10.1016/j.biortech.2014.04.044
  2. Campecino, J., Lagishetty, S., Wawrzak, Z., Alfaro, V. S., Lehnert, N., Reguera, G., Hu, J. and Hegg, E.L. (2020). Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclass, J. Biol. Chem., jbc, RA120, 013981.
  3. Chai, H., Koo, B., Son, S. and Jung, S.P. (2020). Validity and Reproducibility of Various Linear Sweep Voltammetry Tests of Anode and Cathode Electrodes in Microbial Electrolysis Cells.
  4. Choi, T.S., Song, Y.C. and Joicy, A. (2018). Influence of conductive material on the bioelectrochemical removal of organic matter and nitrogen from low strength wastewater, Bioresour. Technol., 259, 407-413. https://doi.org/10.1016/j.biortech.2018.03.049
  5. Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D., Cornell, S., Dentener, F., Galloway, J. and Ganeshram, R.S. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean, science, 320(5878), 893-897. https://doi.org/10.1126/science.1150369
  6. Eaktasang, N., Kang, C.S., Ryu, S.J., Suma, Y. and Kim, H.S. (2013). Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell, Environ. Eng. Res., 18(4), 277-281. https://doi.org/10.4491/eer.2013.18.4.277
  7. Feng, Q., Song, Y. C., Li, J., Wang, Z. and Wu, Q. (2020). Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production, Environ. Res., 109867. https://doi.org/10.1016/j.envres.2020.109867
  8. Gregory, K.B., Bond, D.R. and Lovley, D.R. (2004). Graphite electrodes as electron donors for anaerobic respiration, Environ. Microbiol., 6(6), 596-604. https://doi.org/10.1111/j.1462-2920.2004.00593.x
  9. Haque, N., Cho, D. and Kwon, S. (2014). Performances of metallic (sole, composite) and non-metallic anodes to harness power in sediment microbial fuel cells, Environ. Eng. Res., 19(4), 363-367. https://doi.org/10.4491/eer.2014.056
  10. Hassan, M., Zhu, G., LU, Y.Z., AL-Falahi, A.H., LU, Y., Huang, S. and Wan, Z. (2020). Removal of antibiotics from wastewater and its problematic effects on microbial communities by bioelectrochemical Technology: Current knowledge and future perspectives, Environ. Eng. Res., 26(1), 190405.
  11. Jang, J.K., Kim, K.M., Byun, S., Ryou, Y.S., Chang, I.S., Kang, Y. K. and Kim, Y.H. (2014). Current generation from microbial fuel cell using stainless steel wire as anode electrode, J. Korean Soc. Environ. Eng., 36(11), 753-757. https://doi.org/10.4491/KSEE.2014.36.11.753
  12. Jetten, M.S., Niftrik, L.V., Strous, M., Kartal, B., Keltjens, J.T. and Op den Camp, H. J. (2009). Biochemistry and molecular biology of anammox bacteria, Crit. Rev. Biochem. Mol. Biol., 44(2-3), 65-84. https://doi.org/10.1080/10409230902722783
  13. Joicy, A., Song, Y.C., Yu, H. and Chae, K.J. (2019). Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field, J. Environ. Manag., 250, 109517. https://doi.org/10.1016/j.jenvman.2019.109517
  14. Jung, S., Mench, M.M. and Regan, J.M. (2011). Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH, Environ. Sci. Technol., 45(20), 9069-9074. https://doi.org/10.1021/es201737g
  15. Jung, S. and Regan, J.M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Appl. Microbiol. Biotechnol., 77(2), 393-402. https://doi.org/10.1007/s00253-007-1162-y
  16. Jung, S.P., Kim, E. and Koo, B. (2018). Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells, Chemosphere, 209, 542-550. https://doi.org/10.1016/j.chemosphere.2018.06.070
  17. Kamel, M.S., Abd-Alla, M.H., Abdul-Raouf, U.M., Kamel, M.S., Abd-Alla, M. H. and Abdul-Raouf, U.M. (2019). Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell, Environ. Eng. Res., 25(6), 862-870. https://doi.org/10.4491/eer.2019.412
  18. Kang, H., Jeong, J., Gupta, P. L. and Jung, S.P. (2017). Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells, Int. J. Hydrog. Energy, 42(45), 27693-27700. https://doi.org/10.1016/j.ijhydene.2017.06.181
  19. Kartal, B., Van Niftrik, L., Sliekers, O., Schmid, M.C., Schmidt, I., Van De Pas-Schoonen, K., Cirpus, I., Van der Star, W., Van Loosdrecht, M. and Abma, W. (2004). Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria, Rev. Environ. Sci. Biotechnol., 3(3), 255-264. https://doi.org/10.1007/s11157-004-7247-5
  20. Kashima, H. and Regan, J.M. (2015). Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system, Environ. Sci. Technol., 49(5), 3195-3202. https://doi.org/10.1021/es504882f
  21. Kim, I.S., Chae, K.J., Choi, M.J. and Verstraete, W. (2008). Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation, Environ. Eng. Res., 13(2), 51-65. https://doi.org/10.4491/eer.2008.13.2.051
  22. Kim, T., Kang, S., Chang, I.S., Kim, H.W., Sung, J.H., Paek, Y., Kim, Y.H. and Jang, J.K. (2017). Prevention of power overshoot and reduction of cathodic overpotential by increasing cathode flow rate in microbial fuel cells used stainless steel scrubber electrode, J. Korean Soc. Environ. Eng., 39(10), 591-598. https://doi.org/10.4491/KSEE.2017.39.10.591
  23. Koo, B., Lee, S.M., Oh, S.E., Kim, E.J., Hwang, Y., Seo, D., Kim, J.Y., Kahng, Y.H., Lee, Y.W. and Chung, S.Y. (2019). Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance, Electrochim. Acta, 297, 613-622. https://doi.org/10.1016/j.electacta.2018.12.024
  24. Kuenen, J.G. (2008). Anammox bacteria: from discovery to application, Nat. Rev. Microbiol., 6(4), 320. https://doi.org/10.1038/nrmicro1857
  25. Kuntke, P., Sleutels, T.H.J.A., Saakes, M. and Buisman, C.J.N. (2014). Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell, Int. J. Hydrogen Energy, 39(10), 4771-4778. https://doi.org/10.1016/j.ijhydene.2013.10.089
  26. Lee, K.Y., Choi, I.K., Lim, K.H., Lee, K.Y., Choi, I.K. and Lim, K.H. (2018). Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells, Environ. Eng. Res., 24(3), 443-448. https://doi.org/10.4491/eer.2018.211
  27. Nam, J.Y., Kim, H.W., Lim, K.H. and Shin, H.S. (2010). Electricity generation from MFCs using differently grown anode-attached bacteria, Environ. Eng. Res., 15(2), 71-78. https://doi.org/10.4491/eer.2010.15.2.071
  28. Nam, J.Y., Moon, C., Jeong, E., Lee, W.T., Shin, H.S., Kim, H.W., Nam, J.Y., Moon, C., Jeong, E. and Lee, W.T. (2013). Optimal metal dose of alternative cathode catalyst considering organic substances in single chamber microbial fuel cells, Environ. Eng. Res., 18(3), 145-150. https://doi.org/10.4491/eer.2013.18.3.145
  29. Nam, T., Kang, H., Pandit, S., Kim, S.H., Yoon, S., Bae, S. and Jung, S.P. (2020). Effects of vertical and horizontal configurations of different numbers of brush anodes on performance and electrochemistry of microbial fuel cells, J. Clean. Prod., 124125. https://doi.org/10.1016/j.jclepro.2020.124125
  30. Nam, T., Son, S., Kim, E., Tran, H.V.H., Koo, B., Chai, H., Kim, J., Pandit, S., Gurung, A. and Oh, S.E. (2018). Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance, Environ. Eng. Res., 23(4), 383-389. https://doi.org/10.4491/eer.2017.171
  31. Nam, T., Son, S., Koo, B., Tran, H.V.H., Kim, J.R., Choi, Y. and Jung, S.P. (2017). Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials, Int. J. Hydrog. Energy, 42(45), 27677-27684. https://doi.org/10.1016/j.ijhydene.2017.07.180
  32. Pawar, A.A., Karthic, A., Pandit, S. and Jung, S.P. (2020). Electromethanogenesis using microbial electrolysis cells: Materials.
  33. Puig, S., Coma, M., Desloover, J., Boon, N., Colprim, J. and Balaguer, M.D. (2012). Autotrophic denitrification in microbial fuel cells treating low ionic strength waters, Environ. Sci. Technol., 46(4), 2309-2315. https://doi.org/10.1021/es2030609
  34. Puig, S., Serra, M., Vilar-Sanz, A., Cabre, M., Baneras, L., Colprim, J. and Balaguer, M.D. (2011). Autotrophic nitrite removal in the cathode of microbial fuel cells, Bioresour. Technol., 102(6), 4462-4467. https://doi.org/10.1016/j.biortech.2010.12.100
  35. Qiao, S., Yin, X., Zhou, J. and Furukawa, K. (2014). Inhibition and recovery of continuous electric field application on the activity of anammox biomass, Biodegradation, 25(4), 505-513. https://doi.org/10.1007/s10532-013-9677-7
  36. Rittmanand McCarty. (2001). E dan McCarty. 2001. Environmental Biotechnology: Principle and Apllications. In: McGraw Hill International Ed., New York.
  37. Savla, N., Pandit, S., Khanna, N., Mathuriya, A.S. and Jung, S.P. (2020). Microbially powered electrochemical systems coupled with membrane-based technology for sustainable desalination and efficient wastewater treatment, Environ. Eng. Res., 42(7), 360-380.
  38. Schroder, U., Harnisch, F. and Angenent, L.T. (2015). Microbial electrochemistry and technology: terminology and classification, Energy Environ. Sci., 8(2), 513-519. https://doi.org/10.1039/C4EE03359K
  39. Shin, W., Park, J., Lee, B., Kim, Y. and Jun, H. (2017). Evaluation of biogas production rate by using various electrodes materials in a combined anaerobic digester and microbial electrochemical technology (MET), J. Korean Soc. Environ. Eng., 39(2), 82-88. https://doi.org/10.4491/KSEE.2017.39.2.82
  40. Snoeyink, V.L., Jenkins, D. and Jenkins, D. (1980). Water chemistry. Wiley New York, 91.
  41. Song, Y.C., Joicy, A. and Jang, S.H. (2019). Direct interspecies electron transfer in bulk solution significantly contributes to bioelectrochemical nitrogen removal, Int. J. Hydrog. Energy, 44(4), 2180-2190. https://doi.org/10.1016/j.ijhydene.2018.08.188
  42. Tran, H.V., Kim, E., Koo, B., Sung, S. and Jung, S.P. (2020). Anode maturation time for attaining a mature anode biofilm and stable cell performance in a single chamber microbial fuel cell with a brush anode, Preprint.
  43. Vilajeliu-Pons, A., Koch, C., Balaguer, M. D., Colprim, J., Harnisch, F. and Puig, S. (2018). Microbial electricity driven anoxic ammonium removal, Water Res., 130, 168-175. https://doi.org/10.1016/j.watres.2017.11.059
  44. Villano, M., Scardala, S., Aulenta, F. and Majone, M. (2013). Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell, Bioresour. Technol., 130, 366-371. https://doi.org/10.1016/j.biortech.2012.11.080
  45. Virdis, B., Rabaey, K., Rozendal, R.A., Yuan, Z. and Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells, Water Res., 44(9), 2970-2980. https://doi.org/10.1016/j.watres.2010.02.022
  46. Wang, D., Han, H., Han, Y., Li, K. and Zhu, H. (2017). Enhanced treatment of Fischer-Tropsch (FT) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: effect of electric field, Bioresour. Technol., 232, 18-26. https://doi.org/10.1016/j.biortech.2017.02.010
  47. Wang, Z. and Lim, B. (2020). Electric power generation from sediment microbial fuel cells with graphite rod array anode, Environ. Eng. Res., 25(2), 238-242. https://doi.org/10.4491/eer.2018.361
  48. Wang, Z.J., Lim, B.S., Wang, Z.J. and Lim, B.S. (2016). Electric power generation from treatment of food waste leachate using microbial fuel cell, Environ. Eng. Res., 22(2), 157-161. https://doi.org/10.4491/eer.2016.061
  49. Wu, Y.C., Wu, H.J., Fu, H.Y., Dai, Z. and Wang, Z.J. (2019). Burial depth of anode affected the bacterial community structure of sediment microbial fuel cells, Environ. Eng. Res., 25(6), 870-876.
  50. Yan, H., Saito, T. and Regan, J.M. (2012). Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode, Water Res., 46(7), 2215-2224. https://doi.org/10.1016/j.watres.2012.01.050
  51. Yang, Y., Li, X., Yang, X. and He, Z. (2017). Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system, Bioresour. Technol., 238, 22-29. https://doi.org/10.1016/j.biortech.2017.04.022
  52. Yin, X., Qiao, S. and Zhou, J. (2016). Effects of cycle duration of an external electrostatic field on anammox biomass activity, Sci. Rep., 6, 19568. https://doi.org/10.1038/srep19568
  53. Yoon, H.S., Song, Y.C. and Choi, T.S. (2015). Improvement of anodic performance by using CTP binder containg nickel, J. Korean Soc. Environ. Eng., 37(9), 499-504. https://doi.org/10.4491/KSEE.2015.37.9.499
  54. Yu, Q., Xiong, W., Huang, D., Luo, C., Yang, Q., Guo, T., Wei, Q., Yu, Q., Xiong, W. and Huang, D. (2019). Cathodic reduction characteristics of 2-chloro-4-nitrophenol in microbial electrolysis cell, Environ. Eng. Res., 25(6), 854-861. https://doi.org/10.4491/eer.2019.387
  55. Zamora, P., Georgieva, T., Ter Heijne, A., Sleutels, T.H.J.A., Jeremiasse, A.W., Saakes, M., Buisman, C.J. N. and Kuntke, P. (2017). Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell, J. Power Sources, 356, 491-499. https://doi.org/10.1016/j.jpowsour.2017.02.089
  56. Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J. (2012). Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell, Bioresour. Technol., 116, 271-277. https://doi.org/10.1016/j.biortech.2012.02.131
  57. Zhan, G., Zhang, L., Tao, Y., Wang, Y., Zhu, X. and Li, D. (2014). Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems, Electrochim. Acta, 135, 345-350. https://doi.org/10.1016/j.electacta.2014.05.037
  58. Zhang, F. and He, Z. (2012). Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell, Process Biochem., 47(12), 2146-2151. https://doi.org/10.1016/j.procbio.2012.08.002
  59. Zhang, X., Zhu, F., Chen, L., Zhao, Q. and Tao, G. (2013). Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell, Bioresour. Technol., 146, 161-168. https://doi.org/10.1016/j.biortech.2013.07.024
  60. Zhu, T., Zhang, Y., Bu, G., Quan, X. and Liu, Y. (2016). Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential, Chem. Eng. J., 291, 184-191. https://doi.org/10.1016/j.cej.2016.01.099

Cited by

  1. [논문철회]MAP 결정화 적용을 위한 잉여슬러지의 인 및 암모니아의 거동 특성 vol.35, pp.1, 2020, https://doi.org/10.11001/jksww.2021.35.1.071
  2. Central Composite Design: a Response Surface Methodology Approach in Biodegradation of Textile Dye Wastewater vol.43, pp.6, 2020, https://doi.org/10.4491/ksee.2021.43.6.461
  3. Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation vol.424, 2020, https://doi.org/10.1016/j.cej.2021.130388