참고문헌
- R. B. Wynn, V. A. I. Huvenne, T. P. Le Bas et al., "Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience," Marine Geology, vol. 352, pp. 451-468, 2014. https://doi.org/10.1016/j.margeo.2014.03.012
- M. Dinc and C. Hajiyev, "Integration of navigation systems for autonomous underwater vehicles," Journal of Marine Engineering & Technology, vol. 14, no. 1, pp. 32-43, 2015. https://doi.org/10.1080/20464177.2015.1022382
- C. Winchester, J. Govar, J. Banner, T. Squires, P. Smith, "A survey of available underwater electric propulsion technologies and implications for platform system safety", Workshop on Autonomous Underwater Vehicles, 2002.
- Bo Zhang, "Computer Vision vs. Human Vision", International Conference on Cognitive Informatics, 2010.
- C.-F. Chien, Y.-J. Chen, Y.-T. Han et al., "AI and big data analytics for wafer fab energy saving and chiller optimization to empower intelligent manufacturing," Proceedings of e-Manufacturing & Design Collaboration Symposium, pp. 1-4, 2018.
- S. Biswas, Y. Wang, S. Cui, "Surgically altered face detection using log-gabor wavelet", International Conference on Wavelet Active Media Technology and Information Processing, pp. 154-157, 2015.
- Eman Abdel-Maksoud, Mohammed Elmogy, and Rashid Al-Awadi, "Brain tumor segmentation based on a hybrid clustering technique," Egyptian Informatics Journal, vol. 16, no. 1, pp. 71-81, 2015. https://doi.org/10.1016/j.eij.2015.01.003
- Y. Wang, Y. Lan, Y. Zheng, K. Lee, S. Cui, and J. Lian, "A UGV-based laser scanner system for measuring tree geometric characteristics," International Symposium on Photoelectronic Detection and Imaging, vol. 8905, 2013.
- B. Marr, "Key milestones of Waymo - Google's selfdriving cars," https://www.forbes.com/sites/bernardmarr/2018/09/21/key-milestones-of-waymo-googles-self-driving-cars/#3831b2965369
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
- Manish I. Patel, Sirali Suthar, Jil Thakar, "Survey on Image Compression using Machine Learning and Deep Learning", International Conference on Intelligent Computing and Control Systems, 2019.
- Jonathan Rogers, Dylan Simmons, Milesh Shah, Connor Rowland, Yi Shang, "Deep Learning at Your Fingertips", Consumer Communication and Networking Conference, 2019.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, vol. 25, pp. 1106-1114, 2012.
- R. Girshick, "Fast R-CNN," in 2015 IEEE International Conference on Computer Vision, pp. 1440-1448, 2015.
- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu, "A Comprehensive Survey on Graph Neural Networks", IEEE Transactions on Neural Networks and Learning Systems, pp.1-21, 2020.
- S. Hassairi, R. Ejbali, and M. Zaied, "A deep convolutional neural wavelet network to supervised Arabic letter image classification," International Conference on Intelligent Systems Design and Applications, pp. 207-212, 2015.
- D. Zhang, G. Kopanas, C. Desai, S. Chai, and M. Piacentino, "Unsupervised underwater fish detection fusing flow and objectiveness", Winter Applications of Computer Vision Workshops, pp. 1-7, 2016.
- Deep learning and machine learning, https://ireneli.eu/2016/02/03/deep-learning-05-talk-about-convolutionalneural-network.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: unified, real-time object detection", Conference on Computer Vision and Pattern Recognition, pp. 779-788, 2016.
- Website: ImageNet, http://image-net.org/about-overview.
- J. Gaya, L. T. Gonçalves, A. Duarte, B. Zanchetta, P. Drews, S. Botelho, "Vision-based obstacle avoidance using deep learning," Latin American Robotics Symposium and Brazilian Robotics Symposium, pp. 7-12, 2016.
- Ledan Qian, Libing Hu, Li Zhao, Tao Wang, Runhua Jiang, "Sequence-Dropbox Block for Reducing Overfitting Problem in Image Classification", IEEE Access, vol.8, 2020.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting", Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014.
- Jaya S. Kulchandani, Kruti J. Dangarwala, "Moving Object Detection: Review of Resent Research Trends", International Conference on Pervasive Computing, 2015.
- Aayushi Gautam, Sukhwinder Singh, "Trends in Video Object Tracking in Surveillance: A Survey", International Conference on IoT in Social Mobile Analytics and Cloud, 2019.
- Sonali S. Mengane, Amar A. Dum, "Improved Object Tracking Techniques using Hybrid Approach", International Conference on Trends in Electronics and Informatics, 2019.
- Hyng-il Kim, Woontack Woo, "Smartwatch-assisted Robust 6-DOF Hand Tracker for Object Manipulation in HMD-based Augmented Reality", IEEE Symposium on 3D User Interfaces, 2016.