DOI QR코드

DOI QR Code

Current Status and Prospect of Aircraft Ice Protection Systems

항공기 결빙 보호장치의 기술 현황 및 전망

  • Lee, Jae-Won (Korea Aerospace Industries, LTD.) ;
  • Cho, Min-Young (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kim, Yong-Hwan (Department of Aerospace Engineering, Seoul National University) ;
  • Yee, Kwanjung (Department of Aerospace Engineering, Seoul National University) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2020.06.25
  • Accepted : 2020.10.06
  • Published : 2020.11.01

Abstract

Aircraft ice protection systems are applied to the window shield, engine inlet, and wings to protect the aircraft from ice that may form on the surfaces of aircraft and sensors during operation. Icing on the aircraft can cause serious accidents by degrading the flight stability of the aircraft and by malfunctions in sensors such as the air data probe. Various types of ice protection systems have been developed for aircraft in the past. The electro-thermal type ice protection system contributes greatly to improving energy efficiency in a relatively simple structure, and has established itself as one of most popular ice protection systems for modern aircraft. In this review, two representative ice protection systems-hot-air and electro-thermal types-were intensively analyzed, and the prospect of ice protection systems was discussed based on the current status and application cases.

항공기 결빙 보호장치는 항공기의 Window Shield 및 Engine Inlet, Wing 등에 적용되어 운용 중 발생할 수 있는 항공기와 센서의 표면 결빙으로 부터 항공기를 보호한다. 표면에 증식된 결빙은 항공기의 조종 안정성을 저하시키고 대기자료 프로브의 오작동을 일으킴으로써 심각한 사고의 원인이 되기도 하는데, 이를 방지하기 위하여 다양한 방식의 결빙 보호장치가 개발되었다. Electrothermal 방식은 비교적 간단한 구조이고 에너지 효율을 높이는 데 유리하여 가장 많이 사용되는 항공기 결빙 보호장치로 자리매김하고 있다. 본 리뷰 논문에서는 대표적인 결빙 보호장치인 Hot-air 및 Electro-thermal 방식을 집중적으로 분석하였고, 기술 현황과 적용 사례를 바탕으로 결빙 보호장치의 전망에 대해 고찰하였다.

Keywords

References

  1. Jung, S. K., Lee, C. H., Shin, S. M., Myong, R. S., Cho, T. H., Jeong, H. H. and Jung, J. H., "An Investigation of Icing Effects on the Aerodynamic Characteristics of KC-100 Aircraft," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 6, 2010, pp. 530-536. https://doi.org/10.5139/JKSAS.2010.38.6.530
  2. Raj, L. P., Lee, J. W. and Myong, R. S., "Ice Accretion and Aerodynamic Effects on a Multi-element Airfoil under SLD Icing Conditions," Aerospace Science and Technology, Vol. 85, 2019, pp. 320-333. https://doi.org/10.1016/j.ast.2018.12.017
  3. Mikkelsen, K., Mcknight, R., Ranaudo, R. and Perkins, JR. P., "Icing Flight Research-Aerodynamic Effects of Ice and Ice Shape Documentation with Stereo Photography," AIAA Paper 85-0468, 1985.
  4. Potapczuk, M. G., Al-Khalil, K. M. and Velazquez, M. T., "Ice Accretion and Performance Degradation Calculations with LEWICE/NS," AIAA Paper 93-0173, 1993.
  5. Bragg, M. B., Hutchison, T., Merret, J., Oltman, R. and Pokhariyal, D., "Effect of Ice Accretion on Aircraft Flight Dynamics," AIAA Paper 2000-0360, 2000.
  6. Son, C., Oh, S. and Yee, K., "Ice Accretion on Helicopter Fuselage Considering Rotor-Wake Effects," Journal of Aircraft, Vol. 54, No. 2, 2017, pp. 500-518. https://doi.org/10.2514/1.C033830
  7. Son, C. and Yee, K., "Procedure for Determining Operation Limits of High-Altitude Long-Endurance Aircraft Under Icing Conditions," Journal of Aircraft, Vol. 55, No. 1, 2018, pp. 294-309. https://doi.org/10.2514/1.C034490
  8. Weener, E., Lessons from Icing Accidents and Incidents, NTSB Experimental Aircraft Association, 2011.
  9. Gent, R. W., Dart, N. P. and Cansdale, J. T., "Aircraft Iicng," Philosophical Transactions of the Royal Society A, Vol. 358, No. 1776, 2000, pp. 2873-2911. https://doi.org/10.1098/rsta.2000.0689
  10. Raj, L. P. and Myong, R. S., "Computational Analysis of an Electro-Thermal Ice Protection System in Atmospheric Icing Conditions," Journal of Computational Fluids Engineering, Vol. 21, No. 1, 2016, pp. 1-9. https://doi.org/10.6112/kscfe.2016.21.1.001
  11. Raj, L. P., Yee, K. and Myong, R. S., "Sensitivity of Ice Accretion and Aerodynamic Performance Degradation to Critical Physical and Modeling Parameters Affecting Airfoil Icing," Aerospace Science and Technology, Vol. 98, 2020, 105659. https://doi.org/10.1016/j.ast.2019.105659
  12. Gent, R. W., "Ice Detection and Protection," Encyclopedia of Aerospace Engineering, 2010.
  13. Landsberg, B., Safety Advisor: Aircraft Icing, AOPA Air Safety Foundation, 2008.
  14. Landsberg, B., Safety Advisor: Aircraft Deicing and Anti-icing Equipment, AOPA Air Safety Foundation, 2004.
  15. Calay, R. K., Holdo, A. E. and Mayman, P., "Experimental Simulation of Runback Ice," Journal of Aircraft, Vol. 34, No. 2, 1997, pp. 206-212. https://doi.org/10.2514/2.2173
  16. Filho, A. F., "Aircraft Ice Protection System Certification Plan Development," Engineering Research: Technical Reports, Vol. 5, No. 6, 2015, Article 5.
  17. Albright, A. E., Kohlman, D. L., Schweikhard, W. G. and Evanich, P., "Evaluation of a Pneumatic Boot Deicing System on a General Aviation Wing Model," NASA-TM- 82363, 1981.
  18. English, P., "Resolving the Conflicting Requirements of Aircraft Lightning Protection and In-Flight Ice Protection," 2015 International Conference on Lightning and Static Electricity (ICOLSE 2015), 2015.
  19. Pellissier, M. P. C., Habashi, W. G. and Pueyo, A., "Design Optimization of Hot-air Anti-icing Systems," AIAA Paper 2010-1238, 2010.
  20. Addy, H. E., Oleskiw, M., Broeren, A. P. and Orchard, D., "A Study of the Effects of Altitude on Thermal Ice Protection System Performance," AIAA Paper 2013-2934, 2013.
  21. Bu, X., Lin, G., Yu, J., Shen, X. and Hou, P., "Numerical Analysis of a Swept Wing Hot Air Ice Protection System," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, 2013, pp. 1507-1518. https://doi.org/10.1177/0954410013494515
  22. Domingos, R., Papadakis, M. and Zamora, A., "Computational Methodology for Bleed Air Ice Protection System Parametric Analysis," AIAA Paper 2010-7834, 2012.
  23. Lee, J., Rigby, D., Wright, W. and Choo, Y., "Analysis of Thermal Ice Protection System (TIPS) with Piccolo Tube Using State-of-the-Art Software," AIAA Paper 2006-1011, 2012.
  24. Morency, F., Brahimi, M., Tezok, F. and Paraschivoiu, I., "Hot Air Anti-icing System Modelization in the Ice Prediction Code CANICE," AIAA Paper 98-0192, 2013.
  25. Papadakis, M. and Wong, S. H., "Parametric Investigation of a Bleed Air Ice Protection System," AIAA Paper 2006-1013, 2012.
  26. Papadakis, M., Wong, S. H., Yeong, H. W. and Wong, S. C., Vu, G. T., "Experimental Investigation of a Bleed Air Ice Protection System," SAE Technical Paper 2007-01-3313, 2007.
  27. Papadakis, M., Wong, S. H., Yeong, H. W. and Wong, S. C., "Icing Tests of a Wing Model with a Hot-Air Ice Protection System," AIAA Paper 2010-7833, 2012.
  28. Wang, H., Tran, P. and Habashi, W. G., "Anti-Icing Simulation in Wet Air of a Piccolo System using FENSAP-ICE," SAE Technical Paper 2007-01-3357, 2007.
  29. Wong, S. H., Papadakis, M. and Zamora, A., "Computational Investigation of a Bleed Air Ice Protection System," AIAA Paper 2009-3966, 2009.
  30. Habashi, W. G., "Recent Progress In Unifying CFD and In-Flight Icing Simulation," Proceedings of ICFD 2010 ICFD10-EG-30I11, 2010.
  31. Al-Khalil, K. M., Horvath, C., Miller, D. R. and Wright, W. B., "Validation of NASA thermal ice protection computer codes. III - The validation of ANTICE," AIAA Paper 97-0051, 1997.
  32. Jung, K. Y., Ahn, G. B., Myong, R. S., Cho, T. H., Jung, S. K. and Shin, H. B., "Computational Prediction of Ice Accretion around a Rotorcraft Air Intake," Journal of Computational Fluids Engineering, Vol. 17, No. 2, 2012, pp. 100-106. https://doi.org/10.6112/kscfe.2012.17.2.100
  33. Ahn, G. B., Jung, K. Y., Jung, S. K., Shin, H. B. and Myong, R. S., "Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 3, 2013, 1225-1348.
  34. Ahn, G. B., Jung, K. Y. and Myong, R. S., "Numerical and Experimental Investigation of Ice Accretion on Rotorcraft Engine Air Intake," Journal of Aircraft, Vol. 52, No. 3, 2015, pp. 903-909. https://doi.org/10.2514/1.C032839
  35. Jung, S., Raj, L. P., Rahimi, A., Jeong, H. and Myong, R. S., "Performance Evaluation of Electrothermal Anti-icing Systems for a Rotorcraft Engine Air Intake Using a Meta Model," Aerospace Science and Technology, Vol. 106, 2020, 106174. https://doi.org/10.1016/j.ast.2020.106174
  36. Kohlman, D. L., Schweikhard, W. G. and Evanich, P., "Icing-Tunnel Tests of a Glycol-Exuding, Porous Leading-Edge Ice Protection System on a General Aviation Airfoil," AIAA Paper 81-0405, 1981.
  37. Kohlman, D. L. and Schweikhard, W. G., "Icing-Tunnel Tests of a Glycol-Exuding, Porous Leading-Edge Ice Protection System," Journal of Aircraft, Vol. 19, No. 8, 1982, pp. 647-654. https://doi.org/10.2514/3.57445
  38. Albright, A. E. and Kohlman, D. L., "An Improved Method of Predicting Anti-icing Flow Rates for a Fluid Ice Protection System," AIAA Paper 84-0023, 1984.
  39. Albright, A. E., "A Summary of NASA's Research on the Fluid Ice Protection System," AIAA Paper 85-0467, 1985.
  40. Martin, C. A. and Putt, J. C., "Advanced Pneumatic Impulse Ice Protection System (PIIP) for Aircraft," Journal of Aircraft, Vol. 29, No. 4, 1992, pp. 714-716. https://doi.org/10.2514/3.46227
  41. Shin, J. and Bond, T. H., "Results of a Low Power Ice Protection System Test and a New Method of Imaging Data Analysis," NASA Technical Memorandum, 1992.
  42. Irajizad, P., Al-Bayati, A., Eslami, B., Shafquat, T., Nazari, M., Jafari, P., Kashyap, V., Masou.di, A., Araya, D. and Ghasemi, H., "Stress-Localized Durable Icephobic Surfaces," Materials Horizons, 2019.
  43. Gonzales, J. and Sakaue, H., "Creation of an Icephobic Coating using Graphite Powder and PTFE Nanoparticles," SAE Technical Paper 2019-01-1979, 2019.
  44. Ma, L., Zhang, Z., Liu, Y. and Hu, H., "An Experimental Study to Evaluate the Droplet Impinging Erosion Characteristics of an Icephobic, Elastic Soft Surface," SAE Technical Paper 2019-01-1997, 2019.
  45. Orchard, D., Chevrette, G., Maillard, D. and Khoun, L., "Testing of Elastomer Icephobic Coatings in the AIWT: Lessons Learned," SAE Technical Paper 2019-01-1994, 2019.
  46. Veedu, V., Thapa, S. and Arumugam, G.K., "Advanced Nanocomposite Low Adhesion Icephobic Coating for Aerospace Applications," SAE Technical Paper 2019-01-1996, 2019.
  47. Tian, L., Liu, Y., Li, L. and Hu, H., "An Experimental Study to Evaluate Hydro-/Ice- Phobic Coatings for Icing Mitigation over Rotating Aero-engine Fan Blades," SAE Technical Paper 2019-01-1980, 2019.
  48. Bond, T. H., Shin, J. and Mesander, G. A., "Advanced Ice Protection Systems Test in the NASA Lewis Icing Research Tunnel," NASA Technical Memorandum, 1991.
  49. Al-Khalil, K. M., Ferguson, T. W. and Phillips, D. M., "A Hybrid Anti-Icing Ice Protection System," AIAA Paper 97-0302, 1997.
  50. Al-Khalil, K., Ferguson, T. and Phillips, D., "A Hybrid Anti-icing Ice Protection System," AIAA Paper 97-0302, 1997.
  51. Gerardi, J. J., Ingram, R. B. and Catarella, R. A., "A Shape Memory Alloy Based De-Icing System for Aircraft," AIAA Paper 95-0454, 1995.
  52. Myose, R. Y., Horn, W. J., Hwang, Y., Herrero, J., Huynh, C. and Boudraa, T., "Composite Laminates with Shape Memory Alloys for Leading Edge Deicing," SAE Technical Paper 1999-01-1585, 1999.
  53. Gerardi, J. J., Ingram, R. B. and Caterella, R., "Wind-tunnel Test Results for a Shape Memory Alloy Based De-icing System for Aircraft," American Helicopter Society International Icing Symposium Proceedings, Montreal, 1995.
  54. Jackson, D. G. and Goldberg, J. I., "Ice Detection Systems: A Historical Perspective," SAE 2007-01-3325, 2007.
  55. SAE International, ""Minimum Operational Performance Specification for In-Flight Icing Detection Systems," EUROCAE ED-103 & SAE AS5498, 2009.
  56. Primary and Advisory Ice Detection Systems, Goodrich Sensor Systems Brochure, 2002.
  57. Schlegl, T., Moser, M., Loss, T. and Unger, T., "A Smart Icing Detection System for Any Location on the Outer Aircraft Surface," SAE Technical Paper 2019-01-1931, 2019.
  58. Davison, C., Chalmers, J. and Fuleki, D., "NRC Particle Detection Probe: Results and Analysis from Ground and Flight Tests," SAE Technical Paper 2019-01-1933, 2019.
  59. Anderson, K. J. and Ray, M. D., "SLD and Ice Crystal Discrimination with the Optical Ice Detector," SAE Technical Paper 2019-01-1934, 2019.
  60. Homola, M. C., Nicklasson, P. J. and Sundsbo, P. A., "Ice Sensors for Wind Turbines," Cold Regions Science and Technology, Vol. 46, No. 2, 2006, pp. 125-131. https://doi.org/10.1016/j.coldregions.2006.06.005
  61. Kazula, S. and Hoschler, K., "Ice Detection and Protection Systems for Circular Variable Nacelle Inlet Concepts," CEAS Aeronautical Journal, Vol. 11, 2020, pp. 229-248. https://doi.org/10.1007/s13272-019-00413-1
  62. Burick, R. A. and Ryan, R. J., "FAA Certification of the Lockheed Martin C-130J Transport Ice Protection System," AIAA Paper 99-4016, 1999.
  63. Flemming, R. J., "A History of Ice Protection System Development at Sikorsky Aircraft," SAE Technical Paper 2003-01-2092, 2003.
  64. Flemming, R. J., "US Army UH-60M Helicopter Main Rotor Ice Protection System," SAE Technical Paper 2007-01-3301, 2007.
  65. "Rotor Blade Electrothermal Ice Protection Design Considerations," SAE Aerospace Information Report AIR1667A, 2002.
  66. Flemming, R. J. and Alldridge, P. J., "Sikorsky $S-92A^{(R)}$ and $S-76D^{TM}$ Helicopter Rotor Ice Protection Systems," SAE Technical Paper 2007-01-3299, 2007.
  67. Bernstein, B. C. and Flemming, R. J., "Certification of Sikorsky $S-92A^{(R)}$ Helicopter Ice Protection System: Meteorological Aspects of Tanker Tests and Natural Icing Flights," SAE Aircraft and Engine Icing International Conference Paper 2007-01-3299, 2007.
  68. Choi, J. H., "Significance and Direction of Development of Icing Flight Test of the Surion Helicopter," Aerospace Magazine (in Korean), Vol. 13, No. 1, 2019, pp. 9-20.
  69. Deka, B. K., Hazarika, A., Kong, K., Kim, D. Y., Park, Y. B. and Park, H. W., "Interfacial Resistive Heating and Mechanical Properties of Graphene Oxide Assisted CuO Nanoparticles in Woven Carbon Fiber/Polyester Composite," Composites: Part A, Vol. 80, 2016, pp. 159-170. https://doi.org/10.1016/j.compositesa.2015.10.023
  70. Kong, K., Cheedarala, R. K., Kim, M., Roh, H. D., Park, Y. B. and Park, H. W., "Electrical Thermal Heating and Piezoresistive Characteristics of Hybrid Cuo-Woven Carbon Fiber/Vinyl Ester Composite Laminates," Composites: Part A, Vol. 85, 2016, pp. 103-112. https://doi.org/10.1016/j.compositesa.2016.03.015
  71. Kong, K., Deka, B. K., Kim, M., Oh, A., Kim, H., Park, Y. B. and Park, H. W., "Interlaminar Resistive Heating Behavior of Woven Carbon Fiber Composite Laminates Modified with ZnO Nanorods," Composites Science and Technology, Vol. 100, 2014, pp. 83-91. https://doi.org/10.1016/j.compscitech.2014.06.006
  72. Kim, M., Kong, K., Kim, N., Park, H. W., Park, O., Park, Y. B., Jung, M., Lee, S. H. and Kim, S. G., "Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites," Composites Research, Vol. 26, No. 1, 2013, pp. 72-78. https://doi.org/10.7234/kscm.2013.26.1.72
  73. Palacios, J., Smith, E. and Rose, J., "Instantaneous Deicing of Freezer Ice via Ultrasonic Actuation," AIAA Journal, Vol. 49, No. 6, 2011, pp. 1158-1167. https://doi.org/10.2514/1.J050143
  74. Drew, J., "No Place To Hide," Aviation Week and Space Technology, November 27-December 10, 2017, pp. 50-51 & 56-57.
  75. Hann, R., "UAV Icing: Ice Accretion Experiments and Validation," SAE Technical Paper 2019-01-2037, 2019.
  76. Hann, R., Borup, K., Zolich, A., Sorensen, K., Vestad, H., Steinert, M. and Johansen, T., "Experimental Investigations of an Icing Protection System for UAVs," SAE Technical Paper 2019-01-2038, 2019.
  77. Hann, R., "UAV Icing: Comparison of LEWICE and FENSAP-ICE for Anti-Icing Loads," AIAA Paper 2019-1286, 2019.
  78. Haulman, D. L., "U.S. Unmanned Aerial Vehicles in Combat, 1991-2003," 2003. URL: https://www.afhra.af.mil/Portals/16/documents/Studies/AFD-070912-042.pdf.
  79. Liu, Y., Kolbakir, C., Hu, H. and H. Hu, "A Comparison Study on AC-DBD Plasma and Electrical Heating for Aircraft Icing Mitigation," AIAA Paper 2018-0167, 2018.
  80. Park, J. H. and Myong, R. S., "Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 1 2014, pp. 134-143. https://doi.org/10.5139/JKSAS.2014.42.2.134
  81. Park, J. H., Jung, K. Y. and Myong, R. S., "Computational Prediction of Icing Effects on Aerodynamic Characteristics of a Wind Turbine Blade," Journal of Computational Fluids Engineering, Vol. 18, No. 3, 2013, pp. 51-59. https://doi.org/10.6112/kscfe.2013.18.3.051
  82. Myong, R. S., "Atmospheric Icing Effects on Aerodynamics of Wind Turbine Blade," Proceedings of the ASME 2013 IMECE2013-64085, 2013.
  83. Parent, O. and Ilinca, A., "Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review," Cold Regions Science and Technology, Vol. 65, No. 1, 2011, pp. 88-96. https://doi.org/10.1016/j.coldregions.2010.01.005