DOI QR코드

DOI QR Code

보성 종합기상탑 자료를 활용한 국지기상 특성 연구

Study on the Local Weather Characteristics using Observation Data at the Boseong Tall Tower

  • 황성은 (국립기상과학원 현업운영개발부) ;
  • 이영태 (국립기상과학원 현업운영개발부) ;
  • 신승숙 (국립기상과학원 현업운영개발부) ;
  • 김기훈 (국립기상과학원 현업운영개발부)
  • Hwang, Sung Eun (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Lee, Young Tae (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Shin, Seung Sook (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Kim, Ki Hoon (Operational Systems Development Department, National Institute Meteorological Sciences)
  • 투고 : 2020.08.31
  • 심사 : 2020.10.23
  • 발행 : 2020.10.31

초록

본 연구에서는 2016-2017년 봄철(3-5월) 동안 보성 지역에서의 해풍 발생 시 연직 기상 특성을 분석하기 위해, 해풍 발생에 대한 선정 기준을 마련하였다. 이를 위해 지상에서 측정된 강수량, 운량, 풍향과 지상과 해상 기온의 차이, 1km 고도에서의 윈드프로파일러 및 수치모델 자료를 이용한 풍속 값이 사용되었다. 선정 기준에 따라 보성지역에서의 해풍일을 분류하였고, 해풍 발생 시간 및 고도와 풍속의 크기 분석을 통해 해풍의 시공간적 특성을 파악하였다. 해풍의 발생일은 총 183일 중 23일(12%)로서, 보성지역의 경우 봄철 10일 중 최소 1.2일은 해풍이 나타났다. 해풍은 1200 LST부터 1800 LST로 낮 시간에 지상에서부터 700 m 고도까지 주로 발생하였다. 또한, 최대 풍속은 평균 4.9 m s-1로 1600 LST에 40 m 고도에서 나타나, 선행연구보다 비교적 낮은 값을 보였다. 이는 해안지형이 복잡하여 지형 효과에 따른 풍속 감소로 인한 것으로 보인다.

In this study, the selection criteria for the occurrence of sea breezes in the Boseong area during the spring season (March-May) of 2016-2017 were prepared for the analysis of vertical weather characteristics. For this purpose, wind speed values were determined using the measured precipitation, cloud volume, wind direction, the difference between the ground and sea temperature, a wind Profiler at an altitude of 1 km, and numerical model data. The dates of the sea breezes in Boseong were classified according to the selection criteria, and the spatial and temporal characteristics of the sea breezes were identified by analyzing the time and altitude of the sea breeze and the size of the wind speed. Sea breezes occurred 23 out of 183 days (12%), and in Boseong, at least 1.2 out of 10 spring days exhibited sea breezes. Sea winds ranged from 1200 to 1800 LST, mainly from ground to 700 m altitude during the day. In addition, the maximum wind speed averaged 4.9 m s-1, at an altitude of 40 m at 1600 LST, showing relatively lower values than those in a preceding study. This seems to be owing to the reduction in wind speed due to the complexity of the coastal terrain.

키워드

참고문헌

  1. Arritt, R.W., 1993, Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 28, 116-125. https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2
  2. Azorin-Molina, C., Chen, D., Tijm, S., and Baldi, M., 2011, A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). Int. J. Climatol., RMetS, 31, 468-486. https://doi.org/10.1002/joc.2064
  3. Bechtold, P., Pinty. J., and Mascart. P., 1991, A numerical investigation of the influences of large-scale winds on sea-breeze and inland breezes type circulation. J. Appl. Meteor., 30, 1268-1279. https://doi.org/10.1175/1520-0450(1991)030<1268:ANIOTI>2.0.CO;2
  4. Cuxart, J., Jimenez, M.A., Teli-Sman, P.M., and Grisogono, B., 2014, Study of a Sea-Breeze case through momentum, temperature, and Turbulence Budgets. J Appl Meteor Climatol., AMS, 53, 2589-2609. https://doi.org/10.1175/JAMC-D-14-0007.1
  5. Ferreres, E., Soler, M.R., and Terradellas, E., 2013, Analysis of turbulent exchange and coherent structures in the stable atmospheric boundary layer based on tower observations. Dynamics of atmospheres and oceans, 64, 62-78. https://doi.org/10.1016/j.dynatmoce.2013.10.002
  6. Iwai, H., Murayama, Y., Ishii, S., Mizutani, K., Ohno, Y., and Hashiguchi, T., 2011, Strong updraft at a Sea-Breeze front and associated vertical transport of Near-Surface dense aerosol observed by Doppler Lidar and Ceilometer. Boundary-Layer Meteorol., 141(1), 117-142. https://doi.org/10.1007/s10546-011-9635-z
  7. KMA, 2019, Verification of numerical prediction system, KMA, 232 p. (in Korean)
  8. Lee, H.S., and Min, K.D., 1996, Numerical simulation of seawater winds in the Jungan region of Gyeongsang buk-do according to the wind century of the closing scale, Korean Meteorological Society, 87-90. (in Korean)
  9. Lee, H.K., Lee, I.H., and Kim, J.H., 2004, Estimation of the effective area of sea-breeze using measured data, Korean Society of Environmental Engineers, Chonbuk Univ, 6, 628-634.
  10. Lim, S.U., and Lee D.K., 1994, Airflow simulation over Jeju island as a function of synoptic situations, Asia-Pacific Journal of Atmospheric Sciences, 30(3), 377-399. (in Korean)
  11. Lim, H.J., and Lee, Y.H., 2019, Characteristics of sea breezes at coastal area in Boseong, Atmosphere. Korean Meteorological Society, Vol. 29, No. 1, 41-51. (in Korean) https://doi.org/10.14191/ATMOS.2019.29.1.041
  12. Moon, S.E., Jang, K.M., and Lee, H.W., 1990, A Numerical model study of the land and sea breeze, Asia-Pacific Journal of Atmospheric Sciences 26(2), 67-77. (in Korean)
  13. NIMS, 2016, A Study on the utilization of Boseong Standard Weather Observatory (III) 2016, NIMS, 20-27. (in Korean)
  14. NIMS, 2019, Annual operating report of observations at Standard Weather Observatory (2019), NIMS, 92 p. (in Korean)
  15. NamGung, J.Y., Yu, J.H., Kim, N.W., Choi, M.K., Ham, D.J., Kim, H.S., Jang, Y.J., and Choi, E.K., 2005, The effect of inversion layer on the land and sea breeze circulations near the Gangneung, Korean Meteorological Society, Atmosphere 15(4), 229-239. (in Korean)
  16. Park, S.W., and Yoon, I.H., 1989, Numerical modeling of two-dimensional seawater wind considering the variation of the longitudinal wind field, Asia-Pacific Journal of Atmospheric Sciences, 25(2), 80-93. (in Korean)
  17. Seo, J.W., Oh, H.J., and Nam, J.C., 2001, A Study on the characteristics of marine weather on local scale by seaocean wind, Atmosphere 11(3), 117-121. (in Korean)