과제정보
The support of the School of Civil Engineering at Universiti Sains Malaysia, King Fahd University of Petroleum and Minerals and Imam Abdulrahman Bin Faisal University is gratefully acknowledged.
참고문헌
- Allahverdi, A. and Ahmadnezhad, S. (2014), "Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement", Powder Technology., 251, 41-51. https://doi.org/10.1016/j.powtec.2013.10.023.
- Allahverdi, A., Shaverdi, B. and Najafi, K.E. (2010), "Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag", Int. J. Civil Eng., 8(4), 304-314.
- Aydin, S. and Baradan, B. (2014), "Effect of activator type and content on properties of alkali-activated slag mortars", Compos. Part B: Eng., 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001.
- Bonk, F., Schneider, J., Cincotto, M.A. and Panepucci, H. (2003), "Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes", J. Am. Ceramic Soc., 86(10), 1712-1719. https://doi.org/10.1111/j.1151-2916.2003.tb03545.x.
- Chi, M. (2015), "Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars", Constr. Build. Mater., 99, 128-136. https://doi.org/10.1016/j.conbuildmat.2015.09.029.
-
Choi, S., Kim, J., Oh, S. and Han, D. (2017), "Hydro-thermal reaction according to the
$CaO/SiO_2$ mole-ratio in silico-manganese slag", J. Mater. Cyc. Waste Manage., 19(1), 374-381. https://doi.org/10.1007/s10163-015-0431-6. - Criado, M., Bernal, S.A., Garcia-Trinanes, P. and Provis, J.L. (2018), "Influence of slag composition on the stability of steel in alkali-activated cementitious materials", J. Mater. Sci., 53(7), 5016-5035. https://doi.org/10.1007/s10853-017-1919-3.
- Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001.
- Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S. (2007), "Geopolymer technology: the current state of the art", J.Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
- Fernandez-Jimenez, A., Puertas, F., Sobrados, I. and Sanz, J. (2003), "Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator", J. Am. Ceramic Soc., 86(8), 1389-1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x.
- Frias, M., de Rojas, M.S., Menendez, I., de Lomas, M.G. and Rodriguez, C. (2005), "Properties of SiMn slag as apozzolanic material in portland cement manufacture", Mater. Constr., 55(280), 53-62. https://doi.org/10.3989/mc.2005.v55.i280.206.
- Frias, M., de Rojas, M.I.S., Santamaria, J. and Rodriguez, C. (2006), "Recycling of silicomanganese slag as pozzolanic material in Portland cements: basic and engineering properties", Cement Concrete Res., 36(3), 487-491. https://doi.org/10.1016/j.cemconres.2005.06.014.
- Frias, M. and Rodriguez, C. (2008), "Effect of incorporating ferroalloy industry wastes as complementary cementing materials on the properties of blended cement matrices", Cement Concrete Compos., 30(3), 212-219. https://doi.org/10.1016/j.cemconcomp.2007.05.004.
- Frias, M., de Rojas, M.I.S. and Rodriguez, C. (2009), "The influence of SiMn slag on chemical resistance of blended cement pastes", Constr. Build. Mater., 23(3), 1472-1475. https://doi.org/10.1016/j.conbuildmat.2008.06.012.
- Gruskovnjak, A., Lothenbach, B., Holzer, L., Figi, R. and Winnefeld, F. (2006), "Hydration of alkali-activated slag: comparison with ordinary Portland cement", Adv. Cement Res., 18(3), 119-128. https://doi.org/10.1680/adcr.2006.18.3.119.
- Heah, C.Y., Kamarudin, H., Al Bakri, A.M., Bnhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C.M. and Liew, Y.M. (2013), "Kaolin-based geopolymers with various NaOH concentrations", Int. J. Miner. Metal. Mater., 20(3), 313-322. https://doi.org/10.1007/s12613-013-0729-0.
- Ibrahim, M., Johari, M.A.M., Rahman, M.K. and Maslehuddin, M. (2017), "Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete", Constr. Build. Mater., 147, 648-660. https://doi.org/10.1016/j.conbuildmat.2017.04.163.
- Ibrahim, M., Johari, M.A.M., Maslehuddin, M., Rahman, M.K., Salami, B.A. and Mohamed, H.D. (2019), "Influence of composition and concentration of alkaline activator on the properties of natural-pozzolan based green concrete", Constr. Build. Mater., 201, 186-195. https://doi.org/10.1016/j.conbuildmat.2018.12.117.
- IMnI (2018), International Manganese Institute.
- Babu, D.V. (2018), "Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature", J. Build. Eng., 20, 137-155. https://doi.org/10.1016/J.JOBE.2018.07.005.
- Komnitsas, K. and Zaharaki, D. (2007), "Geopolymerisation: A review and prospects for the minerals industry", Miner. Eng., 20(14), 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011.
- Kumar, S., Garcia-Trinanes, P., Teixeira-Pinto, A. and Bao, M. (2013), "Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag", Cement Concrete Compos., 40, 7-13. https://doi.org/10.1016/j.cemconcomp.2013.03.026.
- Liu, S., Li, Q. and Han, W. (2018), "Effect of various alkalis on hydration properties of alkali-activated slag cements", J. Therm. Anal. Calorim., 131(3), 3093-3104. https://doi.org/10.1007/s10973-017-6789-z.
-
Mohseni, E. (2018), "Assessment of
$Na2SiO_3$ to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites", Constr. Build. Mater., 186, 904-911. https://doi.org/10.1016/j.conbuildmat.2018.08.032. - Morsy, M.S., Alsayed, S.H., Al-Salloum, Y. and Almusallam, T. (2014), "Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder", Arab. J. Sci. Eng., 39(6), 4333-4339. https://doi.org/10.1007/s13369-014-1093-8.
- Najamuddin, S.K., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O. (2019), "Synthesis of low temperature cured alkaline activated silicomanganese fume mortar", Constr. Build. Mater., 200, 387-397. https://doi.org/10.1016/j.conbuildmat.2018.12.056.
- Nasir, M., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O., Al-Harthi, M.A. and Dafallah, H. (2019a), "Impact of slag content and curing methods on the strength of alkaline-activated silico-manganese fume/blast furnace slag mortars", Arab. J. Sci. Eng., 44(10), 8325-8335. https://doi.org/10.1007/s13369-019-04063-7.
- Nasir, M., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O. and Al-Harthi, M.A. (2019b), "Synthesis of alkali-activated binary bended silico-manganese fume and ground blast furnace slag mortar", J. Adv. Concrete Technol., 17(12), 728-735. https://doi.org/10.3151/jact.17.728.
- Nasir, M., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O. and Al-Harthi, M.A. (2020a), "Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar", Constr. Build. Mater., 251, 118961. https://doi.org/10.1016/j.conbuildmat.2020.118961.
- Nasir, M., Megat Johari, M.A., Maslehuddin, M. and Yusuf, M.O. (2020b), "Magnesium sulfate resistance of alkali / slag activated silico-manganese fume-based composites", Constr. Build. Mater., 265, 120851. https://doi.org/10.1016/j.conbuildmat.2020.120851.
- Nasir, M., Megat Johari, M.A., Maslehuddin, M. and Yusuf, M.O. (2020c), "Sodium sulfate resistance of alkali/slag activated silico-manganese fume-based composites", Struct. Concrete, 1-15. https://doi.org/10.1002/suco.202000079.
- Nasir, M., Megat Johari, M.A., Maslehuddin, M. and Yusuf, M.O. (2020d), "Sulfuric acid resistance of alkali/slag activated silico-manganese fume-based mortars", Struct. Concrete, 1-15. https://doi.org/10.1002/suco.201900543.
- Nath, S.K. and Kumar, S. (2016), "Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement", Constr. Build. Mater., 125, 127-134. https://doi.org/10.1016/j.conbuildmat.2016.08.025.
- Nath, S.K. and Kumar, S. (2017), "Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag-Fly ash blends", Constr. Build. Mater., 147, 371-379. https://doi.org/10.1016/j.conbuildmat.2017.04.174.
- Nath, S.K. and Kumar, S. (2018), "Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder", Waste Biomass Valoriz., 1-11.
- Navarro, R., Zornoza, E., Garces, P., Sanchez, I. and Alcocel, E.G. (2017), "Optimization of the alkali activation conditions of ground granulated SiMn slag", Constr. Build. Mater., 150, 781-791. https://doi.org/10.1016/j.conbuildmat.2017.06.064.
- Park, S. and Pour-Ghaz, M. (2018), "What is the role of water in the geopolymerization of metakaolin?", Constr. Build. Mater., 182, 360-370. https://doi.org/10.1016/j.conbuildmat.2018.06.073.
- Pera, J., Ambroise, J. and Chabannet, M. (1999), "Properties of blast-furnace slags containing high amounts of manganese", Cement Concrete Res., 29(2), 171-177. https://doi.org/10.1016/S0008-8846(98)00096-9.
- Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S. and Chindaprasirt, P. (2015), "Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer", Constr. Build. Mater., 91, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.05.001.
- Provis, J.L. (2014), "Geopolymers and other alkali activated materials: Why, how, and what?", Mater. Struct./Materiaux et Constructions. https://doi.org/10.1617/s11527-013-0211-5.
- Puertas, F., Martinez-Ramirez, S., Alonso, S. and Vazquez, T. (2000), "Alkali-activated fly ash/slag cements: strength behaviour and hydration products", Cement Concrete Res., 30(10), 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
- Puertas, F., Varga, C. and Alonso, M.M. (2014), "Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution", Cement Concrete Compos., 53, 279-288. https://doi.org/10.1016/j.cemconcomp.2014.07.012.
- Rai, A., Prabakar, J., Raju, C.B. and Morchalle, R.K. (2002), "Metallurgical slag as a component in blended cement", Constr. Build. Mater., 16(8), 489-494. https://doi.org/10.1016/S0950-0618(02)00046-6.
- Rashad, A.M. (2013), "Properties of alkali-activated fly ash concrete blended with slag", Iran. J. Mater. Sci. Eng., 10(1), 57-64.
- Renaudin, G., Russias, J., Leroux, F., Cau-dit-Coumes, C. and Frizon, F. (2009), "Structural characterization of C-S-H and C-A-S-H samples-Part II: Local environment investigated by spectroscopic analyses", J. Solid State Chem., 182(12), 3320-3329. https://doi.org/10.1016/j.jssc.2009.09.024.
- Rosas-Casarez, C.A., Arredondo-Rea, S.P., Gomez-Soberon, J. M., Alamaral-Sanchez, J.L., Corral-Higuera, R., Chinchillas-Chinchillas, M.D.J. and Acuna-Aguero, O.H. (2014), "Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials", Proceedings of the International Conference on Advances in Civil and Structural Engineering- CSE.
- Roy, A., Schilling, P.J., Eaton, H.C., Malone, P.G., Brabston, W.N. and Wakeley, L.D. (1992), "Activation of ground blast-furnace slag by alkali-metal and alkaline-Earth hydroxides", J. Am. Ceramic Soc., 75(12), 3233-3240. https://doi.org/10.1111/j.1151-2916.1992.tb04416.x.
- Salih, M.A., Farzadnia, N., Ali, A.A.A. and Demirboga, R. (2015), "Effect of different curing temperatures on alkali activated palm oil fuel ash paste", Constr. Build. Mater., 94, 116-125. https://doi.org/10.1016/j.conbuildmat.2015.06.052.
- Thunuguntla, C.S. and Rao, T.D.G. (2018), "Appraisal on strength characteristics of alkali-activated GGBFS with low concentrations of sodium bydroxide", Iran. J. Sci. Technol., Tran. Civil Eng., 42(3), 231-243. https://doi.org/10.1007/s40996-018-0113-4
-
Yahya, Z., Abdullah, M.M.A.B., Hussin, K., Ismail, K.N., Razak, R.A. and Sandu, A.V. (2015), "Effect of solids-to-liquids,
$Na2SiO_3$ -to-NaOH and curing temperature on the palm oil boiler ash (Si+Ca) geopolymerisation system", Mater., 8(5), 2227-2242. https://doi.org/10.3390/ma8052227. - Yusuf, M.O., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2014a), "Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ground slag-ultrafine palm oil fuel ash mortar/concrete", Constr. Build. Mater., 66, 541-548. https://doi.org/10.1016/j.conbuildmat.2014.05.037.
- Yusuf, M.O., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2014b), "Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag", Constr. Build. Mater., 52, 504-510. https://doi.org/10.1016/j.conbuildmat.2013.11.012.
- Yusuf, M.O., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2015), "Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete", Mater. Struct., 48(3), 733-741. https://doi.org/10.1617/s11527-014-0318-3.
- Zhang, Y.J., Zhao, Y.L. and Li, H.H. (2008), "Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag", J. Mater. Sci., 43(22), 7141-7147. https://doi.org/10.1007/s10853-008-3028-9.
- Zhong, Y., Qiu, X., Gao, J. and Guo, Z. (2017), "Recovery of soluble potassium from electric arc furnace dust of manganese alloy production: Characterization and water leaching kinetics", ISIJ International, The Iron and Steel Institute of Japan.