DOI QR코드

DOI QR Code

Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar

  • Nasir, Muhammad (Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University) ;
  • Johari, Megat Azmi Megat (School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia) ;
  • Yusuf, Moruf Olalekan (Department of Civil Engineering, University of Hafr Al Batin) ;
  • Maslehuddin, Mohammed (Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals) ;
  • Al-Harthi, Mamdouh A. (Department of Chemical Engineering, King Fahd University of Petroleum and Minerals)
  • Received : 2019.07.09
  • Accepted : 2020.10.13
  • Published : 2020.11.25

Abstract

This study investigated the effect of alkaline activators - NaOHaq (NH) (NH: 0-16 M) and Na2SiO3aq (NS) (NS/NH: 0-3.5) in the synthesis of silico-manganese fume (SMF) and ground blast furnace slag (BFS) blended alkali-activated mortar (AASB). The use of individual activator was ineffective in producing AASB of sufficient fresh and hardened properties, compared to the synergy of both activators. This may be attributed to incomplete dissolution and condensation of oligomers required for gelation of the binder. An inverse relationship was noted among the fresh properties and the NH concentration or NS/NH ratio. This was influenced by the dissolution and condensation of silicate monomers under polymerization process. The maximum 28-day strength of ~45 MPa, setting time of 60 min and flow of 182 mm was obtained with the use of combined activators (10M-NH and NS/NH=2.5). The combined activators at NS/10M-NH=2.5 constituted SiO2/Na2O, H2O/Na2O and H2O/SiO2 molar ratio of 1.61, 17.33 and 10.77, respectively. This facilitated the formation of C-S-H, C/K-A-S-H and C-Mn-S-H in the framework together with an increase in the crystallinity due to more silicate re-organization within the aluminosilicate chain. On comparison of the high concentrated with mild alkali synthesized product, it revealed that the concentration of OH- and Si monomers together with alkali metals influenced the dissolution of precursors and embedment of the constituent elements in the polymeric matrix. These factors eventually contributed to the microstructural densification of the mortar prepared with NS/10M-NH=2.5 thereby enhancing the compressive strength.

Keywords

Acknowledgement

The support of the School of Civil Engineering at Universiti Sains Malaysia, King Fahd University of Petroleum and Minerals and Imam Abdulrahman Bin Faisal University is gratefully acknowledged.

References

  1. Allahverdi, A. and Ahmadnezhad, S. (2014), "Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement", Powder Technology., 251, 41-51. https://doi.org/10.1016/j.powtec.2013.10.023.
  2. Allahverdi, A., Shaverdi, B. and Najafi, K.E. (2010), "Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag", Int. J. Civil Eng., 8(4), 304-314.
  3. Aydin, S. and Baradan, B. (2014), "Effect of activator type and content on properties of alkali-activated slag mortars", Compos. Part B: Eng., 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001.
  4. Bonk, F., Schneider, J., Cincotto, M.A. and Panepucci, H. (2003), "Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes", J. Am. Ceramic Soc., 86(10), 1712-1719. https://doi.org/10.1111/j.1151-2916.2003.tb03545.x.
  5. Chi, M. (2015), "Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars", Constr. Build. Mater., 99, 128-136. https://doi.org/10.1016/j.conbuildmat.2015.09.029.
  6. Choi, S., Kim, J., Oh, S. and Han, D. (2017), "Hydro-thermal reaction according to the $CaO/SiO_2$ mole-ratio in silico-manganese slag", J. Mater. Cyc. Waste Manage., 19(1), 374-381. https://doi.org/10.1007/s10163-015-0431-6.
  7. Criado, M., Bernal, S.A., Garcia-Trinanes, P. and Provis, J.L. (2018), "Influence of slag composition on the stability of steel in alkali-activated cementitious materials", J. Mater. Sci., 53(7), 5016-5035. https://doi.org/10.1007/s10853-017-1919-3.
  8. Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001.
  9. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S. (2007), "Geopolymer technology: the current state of the art", J.Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
  10. Fernandez-Jimenez, A., Puertas, F., Sobrados, I. and Sanz, J. (2003), "Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator", J. Am. Ceramic Soc., 86(8), 1389-1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x.
  11. Frias, M., de Rojas, M.S., Menendez, I., de Lomas, M.G. and Rodriguez, C. (2005), "Properties of SiMn slag as apozzolanic material in portland cement manufacture", Mater. Constr., 55(280), 53-62. https://doi.org/10.3989/mc.2005.v55.i280.206.
  12. Frias, M., de Rojas, M.I.S., Santamaria, J. and Rodriguez, C. (2006), "Recycling of silicomanganese slag as pozzolanic material in Portland cements: basic and engineering properties", Cement Concrete Res., 36(3), 487-491. https://doi.org/10.1016/j.cemconres.2005.06.014.
  13. Frias, M. and Rodriguez, C. (2008), "Effect of incorporating ferroalloy industry wastes as complementary cementing materials on the properties of blended cement matrices", Cement Concrete Compos., 30(3), 212-219. https://doi.org/10.1016/j.cemconcomp.2007.05.004.
  14. Frias, M., de Rojas, M.I.S. and Rodriguez, C. (2009), "The influence of SiMn slag on chemical resistance of blended cement pastes", Constr. Build. Mater., 23(3), 1472-1475. https://doi.org/10.1016/j.conbuildmat.2008.06.012.
  15. Gruskovnjak, A., Lothenbach, B., Holzer, L., Figi, R. and Winnefeld, F. (2006), "Hydration of alkali-activated slag: comparison with ordinary Portland cement", Adv. Cement Res., 18(3), 119-128. https://doi.org/10.1680/adcr.2006.18.3.119.
  16. Heah, C.Y., Kamarudin, H., Al Bakri, A.M., Bnhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C.M. and Liew, Y.M. (2013), "Kaolin-based geopolymers with various NaOH concentrations", Int. J. Miner. Metal. Mater., 20(3), 313-322. https://doi.org/10.1007/s12613-013-0729-0.
  17. Ibrahim, M., Johari, M.A.M., Rahman, M.K. and Maslehuddin, M. (2017), "Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete", Constr. Build. Mater., 147, 648-660. https://doi.org/10.1016/j.conbuildmat.2017.04.163.
  18. Ibrahim, M., Johari, M.A.M., Maslehuddin, M., Rahman, M.K., Salami, B.A. and Mohamed, H.D. (2019), "Influence of composition and concentration of alkaline activator on the properties of natural-pozzolan based green concrete", Constr. Build. Mater., 201, 186-195. https://doi.org/10.1016/j.conbuildmat.2018.12.117.
  19. IMnI (2018), International Manganese Institute.
  20. Babu, D.V. (2018), "Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature", J. Build. Eng., 20, 137-155. https://doi.org/10.1016/J.JOBE.2018.07.005.
  21. Komnitsas, K. and Zaharaki, D. (2007), "Geopolymerisation: A review and prospects for the minerals industry", Miner. Eng., 20(14), 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011.
  22. Kumar, S., Garcia-Trinanes, P., Teixeira-Pinto, A. and Bao, M. (2013), "Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag", Cement Concrete Compos., 40, 7-13. https://doi.org/10.1016/j.cemconcomp.2013.03.026.
  23. Liu, S., Li, Q. and Han, W. (2018), "Effect of various alkalis on hydration properties of alkali-activated slag cements", J. Therm. Anal. Calorim., 131(3), 3093-3104. https://doi.org/10.1007/s10973-017-6789-z.
  24. Mohseni, E. (2018), "Assessment of $Na2SiO_3$ to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites", Constr. Build. Mater., 186, 904-911. https://doi.org/10.1016/j.conbuildmat.2018.08.032.
  25. Morsy, M.S., Alsayed, S.H., Al-Salloum, Y. and Almusallam, T. (2014), "Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder", Arab. J. Sci. Eng., 39(6), 4333-4339. https://doi.org/10.1007/s13369-014-1093-8.
  26. Najamuddin, S.K., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O. (2019), "Synthesis of low temperature cured alkaline activated silicomanganese fume mortar", Constr. Build. Mater., 200, 387-397. https://doi.org/10.1016/j.conbuildmat.2018.12.056.
  27. Nasir, M., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O., Al-Harthi, M.A. and Dafallah, H. (2019a), "Impact of slag content and curing methods on the strength of alkaline-activated silico-manganese fume/blast furnace slag mortars", Arab. J. Sci. Eng., 44(10), 8325-8335. https://doi.org/10.1007/s13369-019-04063-7.
  28. Nasir, M., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O. and Al-Harthi, M.A. (2019b), "Synthesis of alkali-activated binary bended silico-manganese fume and ground blast furnace slag mortar", J. Adv. Concrete Technol., 17(12), 728-735. https://doi.org/10.3151/jact.17.728.
  29. Nasir, M., Megat Johari, M.A., Maslehuddin, M., Yusuf, M.O. and Al-Harthi, M.A. (2020a), "Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar", Constr. Build. Mater., 251, 118961. https://doi.org/10.1016/j.conbuildmat.2020.118961.
  30. Nasir, M., Megat Johari, M.A., Maslehuddin, M. and Yusuf, M.O. (2020b), "Magnesium sulfate resistance of alkali / slag activated silico-manganese fume-based composites", Constr. Build. Mater., 265, 120851. https://doi.org/10.1016/j.conbuildmat.2020.120851.
  31. Nasir, M., Megat Johari, M.A., Maslehuddin, M. and Yusuf, M.O. (2020c), "Sodium sulfate resistance of alkali/slag activated silico-manganese fume-based composites", Struct. Concrete, 1-15. https://doi.org/10.1002/suco.202000079.
  32. Nasir, M., Megat Johari, M.A., Maslehuddin, M. and Yusuf, M.O. (2020d), "Sulfuric acid resistance of alkali/slag activated silico-manganese fume-based mortars", Struct. Concrete, 1-15. https://doi.org/10.1002/suco.201900543.
  33. Nath, S.K. and Kumar, S. (2016), "Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement", Constr. Build. Mater., 125, 127-134. https://doi.org/10.1016/j.conbuildmat.2016.08.025.
  34. Nath, S.K. and Kumar, S. (2017), "Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag-Fly ash blends", Constr. Build. Mater., 147, 371-379. https://doi.org/10.1016/j.conbuildmat.2017.04.174.
  35. Nath, S.K. and Kumar, S. (2018), "Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder", Waste Biomass Valoriz., 1-11.
  36. Navarro, R., Zornoza, E., Garces, P., Sanchez, I. and Alcocel, E.G. (2017), "Optimization of the alkali activation conditions of ground granulated SiMn slag", Constr. Build. Mater., 150, 781-791. https://doi.org/10.1016/j.conbuildmat.2017.06.064.
  37. Park, S. and Pour-Ghaz, M. (2018), "What is the role of water in the geopolymerization of metakaolin?", Constr. Build. Mater., 182, 360-370. https://doi.org/10.1016/j.conbuildmat.2018.06.073.
  38. Pera, J., Ambroise, J. and Chabannet, M. (1999), "Properties of blast-furnace slags containing high amounts of manganese", Cement Concrete Res., 29(2), 171-177. https://doi.org/10.1016/S0008-8846(98)00096-9.
  39. Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S. and Chindaprasirt, P. (2015), "Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer", Constr. Build. Mater., 91, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.05.001.
  40. Provis, J.L. (2014), "Geopolymers and other alkali activated materials: Why, how, and what?", Mater. Struct./Materiaux et Constructions. https://doi.org/10.1617/s11527-013-0211-5.
  41. Puertas, F., Martinez-Ramirez, S., Alonso, S. and Vazquez, T. (2000), "Alkali-activated fly ash/slag cements: strength behaviour and hydration products", Cement Concrete Res., 30(10), 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
  42. Puertas, F., Varga, C. and Alonso, M.M. (2014), "Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution", Cement Concrete Compos., 53, 279-288. https://doi.org/10.1016/j.cemconcomp.2014.07.012.
  43. Rai, A., Prabakar, J., Raju, C.B. and Morchalle, R.K. (2002), "Metallurgical slag as a component in blended cement", Constr. Build. Mater., 16(8), 489-494. https://doi.org/10.1016/S0950-0618(02)00046-6.
  44. Rashad, A.M. (2013), "Properties of alkali-activated fly ash concrete blended with slag", Iran. J. Mater. Sci. Eng., 10(1), 57-64.
  45. Renaudin, G., Russias, J., Leroux, F., Cau-dit-Coumes, C. and Frizon, F. (2009), "Structural characterization of C-S-H and C-A-S-H samples-Part II: Local environment investigated by spectroscopic analyses", J. Solid State Chem., 182(12), 3320-3329. https://doi.org/10.1016/j.jssc.2009.09.024.
  46. Rosas-Casarez, C.A., Arredondo-Rea, S.P., Gomez-Soberon, J. M., Alamaral-Sanchez, J.L., Corral-Higuera, R., Chinchillas-Chinchillas, M.D.J. and Acuna-Aguero, O.H. (2014), "Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials", Proceedings of the International Conference on Advances in Civil and Structural Engineering- CSE.
  47. Roy, A., Schilling, P.J., Eaton, H.C., Malone, P.G., Brabston, W.N. and Wakeley, L.D. (1992), "Activation of ground blast-furnace slag by alkali-metal and alkaline-Earth hydroxides", J. Am. Ceramic Soc., 75(12), 3233-3240. https://doi.org/10.1111/j.1151-2916.1992.tb04416.x.
  48. Salih, M.A., Farzadnia, N., Ali, A.A.A. and Demirboga, R. (2015), "Effect of different curing temperatures on alkali activated palm oil fuel ash paste", Constr. Build. Mater., 94, 116-125. https://doi.org/10.1016/j.conbuildmat.2015.06.052.
  49. Thunuguntla, C.S. and Rao, T.D.G. (2018), "Appraisal on strength characteristics of alkali-activated GGBFS with low concentrations of sodium bydroxide", Iran. J. Sci. Technol., Tran. Civil Eng., 42(3), 231-243. https://doi.org/10.1007/s40996-018-0113-4
  50. Yahya, Z., Abdullah, M.M.A.B., Hussin, K., Ismail, K.N., Razak, R.A. and Sandu, A.V. (2015), "Effect of solids-to-liquids, $Na2SiO_3$-to-NaOH and curing temperature on the palm oil boiler ash (Si+Ca) geopolymerisation system", Mater., 8(5), 2227-2242. https://doi.org/10.3390/ma8052227.
  51. Yusuf, M.O., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2014a), "Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ground slag-ultrafine palm oil fuel ash mortar/concrete", Constr. Build. Mater., 66, 541-548. https://doi.org/10.1016/j.conbuildmat.2014.05.037.
  52. Yusuf, M.O., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2014b), "Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag", Constr. Build. Mater., 52, 504-510. https://doi.org/10.1016/j.conbuildmat.2013.11.012.
  53. Yusuf, M.O., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2015), "Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete", Mater. Struct., 48(3), 733-741. https://doi.org/10.1617/s11527-014-0318-3.
  54. Zhang, Y.J., Zhao, Y.L. and Li, H.H. (2008), "Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag", J. Mater. Sci., 43(22), 7141-7147. https://doi.org/10.1007/s10853-008-3028-9.
  55. Zhong, Y., Qiu, X., Gao, J. and Guo, Z. (2017), "Recovery of soluble potassium from electric arc furnace dust of manganese alloy production: Characterization and water leaching kinetics", ISIJ International, The Iron and Steel Institute of Japan.