Acknowledgement
This research was supported by a grant (20AUDP-B147701-06) from Architecture & Urban Development Research Program funded by Ministry of Land, Infrastructure and Transport of Korean Government.
References
- Banfill, P.F.G. (2016), "The rheology of fresh cement and concrete", British Soc. Rheology, 61-130.
- Bingham, E.C. (1922), Fluidity and Plasticity, Vol. 2, McGraw-Hill.
- Cao, G., Zhang, H., Tan, Y., Wang, J., Deng, R., Xiao, X. and Wu, B. (2015), "Study on the effect of coarse aggregate volume fraction on the flow behavior of fresh concrete via DEM", Procedia Eng., 102, 1820-1826. https://doi.org/10.1016/j.proeng.2015.01.319.
- Choi, M.S., Kim, Y.J., Jang, K.P. and Kwon, S.H. (2014), "Effect of the coarse aggregate size on pipe flow of pumped concrete", Constr. Build. Mater, 66, 723-730. https://doi.org/10.1016/j.conbuildmat.2014.06.027.
- Ciborowski, J. and Wlodarski, A. (1962), "On electrostatic effects in fluidized beds", Chem. Eng. Sci., 17, 23-32. https://doi.org/10.1016/0009-2509(62)80003-7.
- Daniel, R.C., Poloski, A.P. and Saez, A.E. (2008), "Vane rheology of cohesionless glass beads", Powder. Technol., 181, 237-248. https://doi.org/10.1016/j.powtec.2007.05.003.
- Esteves, L.P., Cachim, P.B. and Ferreira, V.M. (2010), "Effect of fine aggregate on the rheology properties of high performance cement-silica systems", Constr. Build. Mater., 24, 640-649. https://doi.org/10.1016/j.conbuildmat.2009.11.005.
- Faleschini, F., Jimenez, C., Barra, M., Aponte, D., Vazquez, E. and Pellegrino, C. (2014), "Rheology of fresh concretes with recycled aggregates", Constr. Build. Mater., 73, 407-416. https://doi.org/10.1016/j.conbuildmat.2014.09.068.
- Farris, R.J. (1968), "Prediction of the viscosity of multi-modal suspensions from unimodal viscosity data", Tran. Soc. Rheol., 12, 281-301. https://doi.org/10.1122/1.549109.
- Ferraris, C.F. (1999), "Measurement of the rheological properties of cement paste: A new approach", Proceedings of the RILEM International Symposium on the Role of Admixtures in High Performance Concrete Monterrey, Mexico, 21-26.
- Ferraris, C.F. and Gaidis, J.M. (1992), "Connection between the rheology of concrete and rheology of cement paste", ACI. Mater., 89, 388-393.
- Ferraris, C.F., Nicos, S.M., Peltz, M., William, L.G., Edward, J.G. and Toman, B. (2019), "Certification of SRM 2497: Standard reference concrete for rheological measurements" , NIST SP 260 #194, National Institute of Standards and Technology, Gaithersburg, MD, USA, April.
- Feys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E. and Yahia, A. (2017), "Measuring rheological properties of cement paste. Most common techniques, procedures and challenges", RILEM Tech. Lett., 2, 129-135. http://dx.doi.org/10.21809/rilemtechlett.2017.43.
- Han, C.G., Lee, C.G. and Heo, Y.S. (2016), "A comparison study between evaluation method on the rheological properties of cement paste", Korea Inst. Build. Constr., 21, 75-82.
- Hoyle, C., Dai, S., Tanner, R. and Jabbarzadeh, A. (2020), "Effect of particle roughness on the rheology of suspensions of hollow glass microsphere particles", Non-Newtonian Fluid Mech., 276, 104235. https://doi.org/10.1016/j.jnnfm.2020.104235.
- Hwang, H.J., Lee, S.H. and Lee, W.J. (2007), "Effect of particle size distribution of binder on the rheological properties of slag cement pastes", Korea. Ceram. Soc., 44, 6-11. https://doi.org/10.4191/kcers.2007.44.1.006.
- Khandavalli, S. and Rothstein, J.P. (2014), "Extensional rheology of shear-thickening fumed silica nano-particles dispersed in an aqueous polyethylene oxide solution", Rheol., 58, 411-431. https://doi.org/10.1122/1.4864620.
- Kim, I.S., Choi, S.Y. and Yang, E.I. (2018), "Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate", Constr. Build. Mater., 184, 269-277. https://doi.org/10.1016/j.conbuildmat.2018.06.221.
- Kulasegarm, S., Karihaloo, B.L. and Ghanbari, A. (2011), "Modeling the flow of self-compacting concrete", Int, Numer. Anal. Meth. Geomech., 35, 713-723. https://doi.org/10.1002/nag.924.
- Lee, D.K. and Choi, M.S. (2018a), "Standard reference materials for cement paste, Part I: Suggestion of constituent materials based on rheological analysis", Mater., 11, 624. https://doi.org/10.3390/ma11040624.
- Lee, D.K. and Choi, M.S. (2018b), "Standard reference materials for cement paste, Part II: Determination of mixing ratios", Mater., 11, 861. https://doi.org/10.3390/ma11050861.
- Lee, D.K. and Choi, M.S. (2018c), "Standard reference materials for cement paste, Part III: Analysis of the flow characteristics for the developed standard reference material according to temperature change", Mater., 11, 2001. https://doi.org/10.3390/ma11102001.
- Lee, D.K. and Choi, M.S. (2020), "Development of reference materials for cement paste", Adv. Concrete. Constr., 9(6), 547-556. https://doi.org/10.12989/acc.2020.9.6.547.
- Lee, D.K., Lee, K.W. and Choi, M.S. (2018e), "Study on filling capacity of self-consolidating concrete for modular LNG storage tank", Korean Soc. Saf., 33, 50-57.
- Lee, D.K., Lee, K.W., Park, G.J., Kim, S.W., Park, J.J., Kim, Y.J. and Choi, M.S. (2018d), "Guideline for filling performance of concrete for modular LNG storage tanks", Korean Soc. Saf., 33, 86-93.
- Lee, K.W., Lee, H.J. and Choi, M.S. (2019), "Evaluation of 3D concrete printing performance from a rheological perspective", Adv. Concrete. Constr., 8(2), 155-163. http://dx.doi.org/10.12989/acc.2019.8.2.155.
- Mostafizur, R.M., Abdul Aziz, A.R., Saidur, R., Bhuiyan, M.H.U. and Mahbubul, I.M. (2014), "Effect of temperature and volume fraction on rheology of methanol based nanofluids", Heat Mass Transf., 77, 765-769. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.055.
- Olivas, A., Ferraris, C.F., Guthrie, W.F. and Toman, B. (2015), "Re-certification of SRM 2492: Bingham paste mixture for rheological measurements", NIST SP-260-182, National Institute of Standards and Technology: Gaithersburg, MD, USA, August.
- Olivas, A., Ferraris, C.F., Martys, S.N., William, L.G., Edward, J.G. and Toman, B. (2017), "Certification of SRM2493: Standard reference mortar for rheological measurements", NIST-SP-260-187, National Institute of Standard Sand Technology, Gaithersburg, MD, USA.
- Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. and Frechette, F.J. (1988), "Rheological behavior of filled polymeric systems 1. Yield stress and shear-thinning effects", Rheol., 32, 703-735. https://doi.org/10.1122/1.549987.
- Rashad, A. (2016), "Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete", Build. Eng., 5, 119-141. https://doi.org/10.1016/j.jobe.2015.11.011.
- Rashed, A. (2014), "Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement", Constr. Build. Mater., 72, 340-357. https://doi.org/10.1016/j.conbuildmat.2014.08.092.
- Roussel, N. (2012), Understanding the Rheology of Concrete, Woodhead, USA.
- Roussel, N., Lemaitre, A., Flatt, R.J. and Coussot, P. (2010), "Steady state flow of cement suspensions. A micro mechanical state of the art", Cement Concrete Res., 40, 77-84. https://doi.org/10.1016/j.cemconres.2009.08.026.
- Struble, L.J. and Lei, W.G. (1995), "Rheological changes associated with setting of cement paste", Adv. Cement Bas. Mater., 2, 224-230. https://doi.org/10.1016/1065-7355(95)90041-1.
- Uchikawa, H., Ogawa, K. and Uchida, S. (1985), "Influence of character of clinker on the early hydration process and rheological property of cement paste", Cement Concrete Res., 15, 561-572. https://doi.org/10.1016/0008-8846(85)90053-5.
- Wolny, A. and Kazmierczak, W. (1993), "The influence of static electrification on dynamics and rheology of fluidized bed", Chem. Eng. Sci., 48(20), 3529-3534. https://doi.org/10.1016/0009-2509(93)85008-D.
- You, N., Liu, Y., Gu, D., Ozbakkaloglu, T., Pan, J. and Zhang, Y. (2019), "Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate", Constr. Build. Mater., 242, 118029. https://doi.org/10.1016/j.conbuildmat.2020.118029