DOI QR코드

DOI QR Code

촉매산화반응을 이용한 Micro-Flower NiCoMnO2 고차구조체 제조 및 슈퍼커패시터 전극 응용

Micro-Flower NiCoMnO2 Superstructures Prepared by a Catalytic Chemical Oxidation for Supercapacitor Applications

  • 조영훈 (전북대학교 공과대학 유기소재파이버공학과) ;
  • 고태훈 (전북대학교 공과대학 유기소재파이버공학과) ;
  • 최웅기 (한국탄소융합기술원) ;
  • 국윤수 (한국탄소융합기술원) ;
  • 서민강 (한국탄소융합기술원) ;
  • 김병석 (전북대학교 공과대학 유기소재파이버공학과)
  • Cho, Young-Hun (Department of Organic Materials & Fiber Engineering, Jeonbuk National University) ;
  • Ko, Tae Hoon (Department of Organic Materials & Fiber Engineering, Jeonbuk National University) ;
  • Choi, Woong-Ki (Korea Institute of Carbon Convergence Technology) ;
  • Kuk, Yun-Su (Korea Institute of Carbon Convergence Technology) ;
  • Seo, Min-Kang (Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byoung-Suhk (Department of Organic Materials & Fiber Engineering, Jeonbuk National University)
  • 투고 : 2020.10.02
  • 심사 : 2020.10.22
  • 발행 : 2020.10.31

초록

Herein, a facile method of catalytic chemical oxidation was reported to produce the micro-flower NiCoMnO2 superstructures. FE-SEM confirmed the uniform NiCoMnO2 flower-like morphologies with an averaged diameter of 1-2 ㎛, composed of the nanosheets with the thickness of 10 ± 2 nm, could provide the pathways for efficient and fast transport of both electrolyte ions and electrons due to higher electroactive surface areas and enhanced electrical conductivity. As an anode material, nanorod-like β-FeOOH with the average diameter of 139 ± 30 nm and the length of 796 ± 140 nm was obtained by a hydrothermal method. The NiCoMnO2 and β-FeOOH electrode materials showed the good electrochemical performance with maximum specific capacitances of 726 F g-1 and 276 F g-1 at 1 A g-1, respectively. Furthermore, the fabricated asymmetric supercapacitor (ASC) NiCoMnO2//β-FeOOH device exhibited excellent specific capacitance of 110 F g-1 at 1 A g-1, cycle stability of 84.5% after 2000 charge/discharge cycles and high energy density of 34.38 Wh kg-1 at the power density of 750 W kg-1.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2012356) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1I1A1A01073937).

참고문헌

  1. Y. Zhang, L. Li, H. Su, W. Huang, and X. Dong, "Binary Metal Oxide: Advanced Energy Storage Materials in Supercapacitor", J. Mater. Chem. A, 2015, 3, 43-59. https://doi.org/10.1039/C4TA04996A
  2. P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, "Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-metal Oxide Nanowire/single-walld Carbon Nanotube Hybrid Thin-film Electrodes", ACS Nano, 2010, 4, 4403-4411. https://doi.org/10.1021/nn100856y
  3. T. H. Ko, J. G. Seong, S. Radhakrishnan, C. S. Kwak, M. S. Khil, H. Y. Kim, and B. S. Kim, "Dual Functional Nickel Cobalt/MWCNT Composite Electrode-based Electrochemcial Capacitor and Enzymeless Glucose Biosensor Applications: Influence of Ni/Co Molar Ratio", J. Ind. Eng. Chem., 2019, 73, 1-7. https://doi.org/10.1016/j.jiec.2019.01.009
  4. Y. Q. Wu, X. Y. Chen, P. T. Ji, and Q. Q. Zhou, "Sol-gel Approach for Controllable Synthesis and Electrochemical Properties of $NiCo_2O_4$ Crystals as Electrode Materials for Application in Supercapacitors", Electrochim. Acta, 2011, 56, 7517-7522. https://doi.org/10.1016/j.electacta.2011.06.101
  5. J. W. Acharya, T. H. Ko, J. G. Seong, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "Hybrid Electrodes Based on Zn-Ni-Co Ternary Oxide Nanowires and Nanosheets for Ultra-high-rate Asymmetric Supercapacitors", ACS Appl. Nano Mater., 2020, 3, 8679-8690. https://doi.org/10.1021/acsanm.0c01419
  6. Z. Pan, J. Yang, Q. Zhang, M. Liu, Y. Hu, Z. Kou, N. Liu, X. Yang, X. Ding, H. Chen, J. Li, K. Zhang, Y. Qiu, Q. Li, J. Wang, and Y. Zhang, "All-solid-state Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility", Adv. Energy Mater., 2019, 9, 1802753-1802762. https://doi.org/10.1002/aenm.201802753
  7. X. Wu, B. Huang, Q. Wang, and Y. Wang, "Wide Potential and High Energy Density for an Asymmetric Aqueous Supercapacitor", J. Mater. Chem. A, 2019, 7, 19017-19025. https://doi.org/10.1039/C9TA06428A
  8. J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, and Y. H. Lee, "Asymmetric Supercapacitors Based on Graphene/$MnO_2$ Nanospheres and Graphene/$MoO_3$ Nanosheets with High Energy Density", Adv. Funct. Mater., 2013, 23, 5074-5083. https://doi.org/10.1002/adfm201301851
  9. T. H. Ko, S. Radhakrishnan, W. K. Choi, M. K. Seo, and B. S. Kim, "Core/shell-like $NiCo_2O_4$-decorated MWCNT Hybrids Prepared by a Dry Synthesis Technique and Its Supercapacitor Applications", Mater. Lett., 2016, 166, 105-109. https://doi.org/10.1016/j.matlet.2015.12.053
  10. V. Venkatachalam, A. Alsalme, A. Alghamdi, and R. Jayavel, "High Performance Electrochemical Capacitor Based on $MnCo_2O_4$ Nanostructured Electrode", J. Electroanal. Chem., 2015, 756, 94-100. https://doi.org/10.1016/j.jelechem.2015.08.019
  11. Y. L. T. Ngo, L. Sui, W. Ahn, J. S. Chung, and S. H. Hur, "$NiMn_2O_4$ Spinel Binary Nanostructure Decorated on Three-dimensional Reduced Graphene Oxide Non-enzymatic Glucose Sensor", Nanoscale, 2017, 9, 19318-19327. https://doi.org/10.1039/C7NR07748C
  12. B. S. Kumar, T. H. Ko, and B. S. Kim, "Rational Design of Binder-free $ZnCo_2O_4$ and $Fe_2O_3$ Decorated Porous 3D Ni as High-performance Electrodes for Asymmetric Supercapacitor", Ceram. Int., 2018, 44, 10635-10645. https://doi.org/10.1016/j.ceramint.2018.03.091
  13. X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun, and J. Zhang, "Morphology-controllable Preparation of $NiFe_2O_4$ as High Performance Electrode Material for Supercapacitor", Electrochim. Acta, 2018, 296, 181-189.
  14. T. H. Ko, S. Radhakrishnan, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "A Green and Scalable Dry Synthesis of $NiCo_2O_4$/graphene Nanohybrids for High-performance Supercapacitor and Enzymeless Glucose Biosensor Applications", J. Alloys Compd., 2017, 696, 193-200. https://doi.org/10.1016/j.jallcom.2016.11.234
  15. T. H. Ko, D. Lei, S. Balasubramaniam, M. K. Seo, Y. S. Chung, H. Y. Kim, and B. S. Kim, "Polypyrrole-decorated Hierarchical $NiCo_2O_4$ Nanoneedles/carbon Fiber Papers for Flexible High Performance Supercapacitor Applications", Electrochim. Acta, 2017, 247, 524-534. https://doi.org/10.1016/j.electacta.2017.07.047
  16. X. Zhu, H. Tao, and M. Li, "Co-precipitation Synthesis of Nickel Cobalt Hexacyanoferrate for Binder-free High-performance Supercapacitor Electrodes", Int. J. Hydrogen Energy, 2020, 45, 14452-14460. https://doi.org/10.1016/j.ijhydene.2020.02.188
  17. J. Lin, Y. Yan, H. Wang, X. Zheng, Z. Jiang, Y. Wang, J. Qi, J. Cao, W. Fei, and J. Feng, "Hierarchical $Fe_2O_3$ and NiO Nanotube Arrays as Advanced Anode and Cathode Electrodes for High-performance Asymmetric Supercapacitors", J. Alloys Compd., 2019, 794, 255-260. https://doi.org/10.1016/j.jallcom.2019.04.273
  18. A. Kumar, D. Sarkar, S. Mukherjee, S. Patil, D. D. Sarma, and A. Shukla, "Realizing an Asymmetric Supercapacitor Employing Carbon Nanotubes Anchored to $Mn_3O_4$ Cathode and $Fe_3O_4$ Anode", ACS Appl. Mater. Interfaces, 2018, 10, 42484-42493. https://doi.org/10.1021/acsami.8b16639
  19. C. Long, M. Zheng, Y. Xiao, B. Lei, H. Dong, H. Zhang, H. Hu, and Y. Liu, "Amorphous Ni-Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors", ACS Appl. Mater. Interfaces, 2015, 7, 24419-24429. https://doi.org/10.1021/acsami.5b03036
  20. X. Zheng, Z. Han, F. Chai, F. Qu, H. Xia, and X. Wu, "Flexible Heterostructured Supercapacitor Electrodes Based on ${\alpha}-Fe_2O_3$ Nanosheets with Excellent Electrochemical Performances", Dalton Trans., 2016, 45, 12862-12870. https://doi.org/10.1039/C6DT02238C
  21. J. Acharya, T. H. Ko, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "Oxalic Acid Assisted Rapid Synthesis of Mesoporous $NiCo_2O_4$ Nanorods as Electrode Materials with Higher Energy Density and Cycle Stability for High-performance Asymmetric Hybrid Supercapacitor Applications", J. Colloid Interface Sci., 2020, 564, 65-76. https://doi.org/10.1016/j.jcis.2019.12.098
  22. J. Chen, X. Wang, J. Wang, and P. S. Lee, "Sulfidation of NiMn-layerd Double Hydroxides/graphene Oxide Composites Toward Supercapaciotr Electrodes with Enhanced Performance", Adv. Energy Mater., 2016, 6, 1501745-1501752. https://doi.org/10.1002/aenm.201501745
  23. Y. Li, J. Pan, J. Wu, T. Yi, and Y. Xie, "Mesoporous $NiCo_2O_4$ Nanoneedles@$MnO_2$ Nanoparticles Grown on Nickel Foam for Electrode Used in High-performance Supercapacitors", J. Energy Chem., 2019, 31, 167-177. https://doi.org/10.1016/j.jechem.2018.06.009
  24. Y. Park, M. Oh, Y. Lee, and H. Park, "Facile Thermochemical Conversion of FeOOH Nanorods to $ZnFe_2O_4$ Nanorods for High-rate Lithium Storage", RSC Adv., 2019, 9, 21444-21450. https://doi.org/10.1039/C9RA03600H
  25. Q. Zhu, H. Hu, G. Li, C. Zhu, and Y. Yu, "$TiO_2$Nanotube Arrays Grafted with $MnO_2$ Nanosheets as High-performance Anode for Lithium Ion Battery", Electrochim. Acta, 2015, 156, 252-260. https://doi.org/10.1016/j.electacta.2015.01.023
  26. A. Pan, Y. Wang, W. Xu, Z. Nie, S. Liang, Z. Nie, C. Wang, G. Cao, and J. G. Zhang, "High-performance Anode Based on Porous $Co_3O_4$ Nanodiscs", J. Power Sources, 2014, 225, 125-129.
  27. N. Chen, J. T. Jiang, C. Y. Xu, S. J. Yan, and L. Zhen, "Rational Construction of Uniform CoNi-based Core-shell Microspheres with Tunable Electromagnetic Wave Absorption Properties", Sci. Rep., 2018, 8, 3196-3205. https://doi.org/10.1038/s41598-018-21047-z
  28. B. G. S. Raj, H. Y. Kim, and B. S. Kim, "Ultrasound Assisted Formation of $Mn_2SnO_4$ Nanocube as Electrodes for High Performance Symmetrical Hybrid Supercapacitors", Electrochim. Acta, 2018, 278, 93-105. https://doi.org/10.1016/j.electacta.2018.05.021
  29. X. Zhang, L. An, J. Yin, P. Xi, Z. Zheng, and Y. Du, "Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Applcation", Sci. Rep., 2017, 7, 43590-43599. https://doi.org/10.1038/srep43590
  30. G. S. Gund, D. P. Dubal, N. R. Chodankar, J. Y. Cho, P. G. Romero, C. Park, and C. D. Lokhande, "Low-cost Flexible Supercapacitors with High-energy Density Based on Nanostructured $MnO_2$ and $Fe_2O_3$ Thin Films Directly Fabricated onto Stinless Steel", Sci. Rep., 2015, 5, 12454-12466. https://doi.org/10.1038/srep12454
  31. J. Park, T. H. Ko, S. Balasubramaniam, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, "Enhancing the Performance and Stability of $NiCo_2O_4$ Nanoneedle Coated on Ni Foam Electrodes with Ni Seed Layer for Supercapacitor Applications", Ceram. Int., 2019, 45, 13099-13111. https://doi.org/10.1016/j.ceramint.2019.03.244
  32. K. O. Oyedotun, M. J. Madito, D. Y. Momodu, A. A. Mirghni, T. M. Masikhwa, and N. Manyala, "Synthesis of Ternary $NiCo-MnO_2$ Nanocomposite and Its Application as a Novel High Energy Supercapattery Device", Chem. Eng. J., 2018, 335, 416-433. https://doi.org/10.1016/j.cej.2017.10.169
  33. C. Pan, H. Gu, and L. Dong, "Synthesis and Electrochemcial Performance of Polyaniline@$MnO_2$/graphene Ternary Composites for Electrochemical Supercapacitors", J. Power Sources, 2016, 303, 175-181. https://doi.org/10.1016/j.jpowsour.2015.11.002
  34. Z. Zhao, T. Shen, Z. Liu, Q. Zhong, and Y. Qim, "Facile Fabrication of Binder-free Reduced Graphene Oxide/$MnO_2$/Ni Foam Hybrid Electrode for High-performance Supercapacitors", J. Alloys Compd., 2020, 812, 152124-152132. https://doi.org/10.1016/j.jallcom.2019.152124
  35. K. O. Oyedotun, Y. M. Masikhwa, A. A. Mirghni, B. K. Mutuma, and N. Manyala, "Electrochemical Properties of Asymmetric Supercapacitor Based on Optimized Carbon-base Nickel-cobalt-manganese Ternary Hydroxide and Sulphur-doped Carbonized Iron-polyaniline Electrodes", Electrochim. Acta, 2020, 334, 135610-135621. https://doi.org/10.1016/j.electacta.2020.135610
  36. S. G. Krishnan, M. Harilal, B. Pal, I. I. Misnon, C. Karuppiah, C. C. Yang, and R. Jose, "Improving the Symmetry of Asymmetric Supercapacitors Using Battery-type Positive Electrodes and Activated Carbon Negative Electrodes by Mass and Charge Balance", J. Electroanal. Chem., 2017, 805, 126-132. https://doi.org/10.1016/j.jelechem.2017.10.029
  37. P. F. Liu, J. J. Zhou, G. C. Li, M. K. Wu, K. Tao, F. Y. Yi, W. N. Zhao, and L. Han, "A Hierarchical NiO/NiMn-layered Double Hydroixde Nanosheet Array on Ni Foam for High Performance Supercapacitor", Dalton Trans., 2017, 46, 7388-7391. https://doi.org/10.1039/C7DT00932A
  38. Y. Zhong, X. Cao, Y. Liu, L. Cui, and J. Liu, "Nickel Cobalt Manganese Ternary Carbonate Hydroxide Nanoflakes Branched on Cobalt Carbonate Hydroxide Nanowire Arrays as Novel Electrode Material for Supercapacitors with Outstanding Performance", J. Colloid Interface Sci., 2021, 581, 11-20. https://doi.org/10.1016/j.jcis.2020.07.124