DOI QR코드

DOI QR Code

Enhancing Flame Retardancy of Cotton Fabrics via Formation of Layer-by-layer Assemblies of Polyacrylic Acid and Calcium Phosphate

폴리아크릴산과 인산칼슘의 다층 레이어 형성을 통한 면직물의 난연성 향상

  • Lee, Hong Chan (Department of Electric and Electronic Engineering, Jungwon University) ;
  • Lee, Shichoon (Department of Aero-Materials Engineering, Jungwon University)
  • 이홍찬 (중원대학교 전기전자공학과) ;
  • 이시춘 (중원대학교 항공재료공학과)
  • Received : 2020.10.01
  • Accepted : 2020.10.25
  • Published : 2020.10.31

Abstract

This study was conducted to impart flame retardancy to cotton fabrics while maintaining their mechanical properties and appearance under environmentally friendly and room-temperature conditions. Anionic functional groups were prepared by adding polyacrylic acid to the cotton fabric. Calcium phosphate was grafted to polyacrylic acid by inducing a reaction between calcium ions and ammonium phosphate. In this layer-by-layer (LBL) deposition, 20 layers were formed. The results of a vertical flammability test revealed that the combustion of the multilayered fabrics was delayed and that the fabric structures were maintained, even after the combustion process. Thermogravimetric analysis showed that the residues of the multilayered cotton increased to 17% at temperatures above 500 ℃. X-ray photoelectron spectroscopy confirmed the production of calcium phosphate. These results indicate that calcium ions reacted with and were grafted to the carboxyl groups of polyacrylic acid, and that the grafted calcium ions reacted with ammonium phosphate to generate calcium phosphate. These findings suggest that LBL deposition can be performed with calcium phosphate to produce cotton fabrics with improved flame retardancy in an environmentally friendly manner.

Keywords

References

  1. F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, and P. Dubois, "New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites", Mater. Sci. Eng., 2009, R 63, 100-123.
  2. A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, and S. A. Padbury, "Developments in Flame Retardant Textiles - A Review", Polym. Degrad. Stab., 2005, 88, 3-12. https://doi.org/10.1016/j.polymdegradstab.2003.10.024
  3. A. R. Horrocks, "Flame Retardant Challenges for Textiles and Fibres: New Chemistry Versus Innovatory Solutions", Polym. Degrad. Stab., 2011, 96, 377-392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036
  4. S. V. Levchik and E. D. Wei, "A Review of Recent Progress in Phosphorous-based Flame Retardant", J. Fire Sci., 2006, 24, 345-364. https://doi.org/10.1177/0734904106068426
  5. M. Lji and S. Serizawa, "Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices", Polym. Adv. Thechnol., 1998, 9, 593-600. https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<593::AID-PAT810>3.0.CO;2-U
  6. D. W. van Krevelen, "Properties of Polymers", 4th Ed., Elsevier, B.V., Amsterdam, 2009, pp.847-873.
  7. T. Ishikawa, I. Maki, T. Koshizuka, T. Ohkawa, and K. Takeda, "Effect of Perfluoroalkane Sulfonic Acid on the Flame Retardancy of Polycarbonate", J. Macromol. Sci. Part A: Pure Appl. Sci., 2004, A41, 523-535.
  8. B. Li and M. Xu, "Effect of a Novel Charring Foaming Agent on Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene", Polym. Degrad. Stab., 2006, 91, 1380-1386. https://doi.org/10.1016/j.polymdegradstab.2005.07.020
  9. K. A. Sameia and S. Gaan, "An Overview of Some Recent Advances in DOPO-derivatives: Chemistry and Flame Retardant Applications", Polym. Degrad. Stab., 2015, 113, 119-134. https://doi.org/10.1016/j.polymdegradstab.2014.12.014
  10. D. D. Jiang, Q. Yao, M. A. Mckinny, and C. A. Wilkie, "TGA/FTIR Studies on the Thermal Degradation of Some Polymeric Sulfonic and Phosphonic Acids and Their Sodium Salts", Polym. Degrad. Stab., 1999, 63, 423-434. https://doi.org/10.1016/S0141-3910(98)00123-2
  11. A. S. Politou, C. Morterra, and M. I. D. Low, "Infrared Studiesof Carbons. XII. The Formation of Char from a Polycarbonate", Carbon, 1990, 28, 529-538. https://doi.org/10.1016/0008-6223(90)90049-5
  12. S. Gaan and G. Sun, " Effect of Nitrogen Additives on Thermal Decomposition of Cotton", J. Anal. Appl. Pyrolysis, 2009, 84, 108-115. https://doi.org/10.1016/j.jaap.2008.12.004
  13. N. Illy, M. Fache, R. Me'nard, C. Negrell, S. Caillol, and G. David, "Phosphorylation of Bio-based Compounds: The State of The Art", Polym. Chem., 2015, 6, 6257-6291. https://doi.org/10.1039/C5PY00812C
  14. G. C. Tesoro and C. H. Meiser, "Some Effects of Chemical Composition on the Flammability Behavior of Textiles", Text. Res. J., 1970, 40, 430-436. https://doi.org/10.1177/004051757004000506
  15. S. H. Chiu and W. K. Wang, "Dynamic Flame Retardancy of Polypropylene Filled with Ammonium Polyphosphate, Pentaerythritol and Melamine Additives", Polym., 1998, 39, 1951-1955. https://doi.org/10.1016/S0032-3861(97)00492-8
  16. W. Wu and C. Q. Yang, "Comparison of DMDHEU and Melamine-Formaldehyde as the Binding Agents for a Hydroxy-Functional Organophosphorus Flame Retarding Agent on Cotton", J. Fire Sci., 2004, 22, 125-142. https://doi.org/10.1177/0734904104039695
  17. A. R. Horrocks and S. Zhang, "Enhancing Polymer Flame Retardancy by Reaction with Phosphorylated Polyols. Part 2. Cellulose Treated with a Phosphonium Salt Urea Condensate (proban $CC^{(R)}$) Flame Retardant", Fire Mater., 2002, 26, 173-182. https://doi.org/10.1002/fam.794
  18. H. C. Lee and S. Lee, "Flame Retardancy for Cotton Cellulose Treated with $H_3PO_3$", J. Appl. Poly. Sci., 2018, 46497, 1-9.
  19. H. C. Lee and S. Lee, "Improvement of Flame Retardancy of Polycarbonate with Ionic Liquid Addition", Text. Sci. Eng., 2016, 53, 442-448. https://doi.org/10.12772/TSE.2016.53.442
  20. Z. Sui, D. Salloum, and J. B. Schlenoff, "Effect of Molecular Weight on the Construction of Polyelectrolyte Multilayers: Stripping Versus Sticking", Langmuir, 2003, 19, 2491-2495. https://doi.org/10.1021/la026531d
  21. L. Chang, X. Kong, F. Wang, L. Wang, and J. Shen, "Layer-by-layer Assembly of Poly(N-acryloyl-N'-propylpiperazine) and Poly(acrylic acid): Effect of pH and Temperature", Thin Solid Films, 2008, 516, 2125-2129. https://doi.org/10.1016/j.tsf.2007.07.188
  22. Y.-C. Li, J. Schulz, S. Mannen, C. Delhom, B. Condon, S. Chang, M. Zammarano, and J. C. Grunlan, "Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric", ACS Nano, 2010, 4, 3325-3337. https://doi.org/10.1021/nn100467e
  23. Y.-C. Li, J. Schulz, and J. C. Grunlan, "Polyelectrolyte/Nanosilicate Thin-Film Assemblies: Influence of pH on Growth, Mechanical Behavior, and Flammability", ACS Appl. Mater. Interfaces, 2009, 1, 2338-2347. https://doi.org/10.1021/am900484q
  24. S. Zhang and A. R. Horrocks, "A Review of Flame Retardant Propylene Fibers", Prog. Polym. Sci., 2008, 28, 1517-1538. https://doi.org/10.1016/j.progpolymsci.2003.09.001
  25. H. Ju, X. Feng, Y. Ye, L. Zhang, H. Pan, C. T. Campbell, and J. Zhu, "Ca Carboxylate Foramtion at the Calcium/Poly (methylmethacryalate) Interface", J. Phys. Chem. C, 2012, 116, 20465-20471. https://doi.org/10.1021/jp307010x
  26. Sunarso, A. Tsuchiya, R. Toita, K. Tsuru, and K. Ishikawa, "Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization", Int. J. Mol. Sci., 2020, 21, 1-13.