References
- Blois MS. (1958). Antioxidant determinations by the use of a stable free radical. Nature. 181:1199-1200. https://doi.org/10.1038/1811199a0
- Cho WCS and Leung KN. (2007a). In vitro and in vivo antitumor effects of Astragalus membranaceus. Cancer Letters. 252: 43-54. https://doi.org/10.1016/j.canlet.2006.12.001
- Cho WCS and Leung KN. (2007b). In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. Journal of Ethnopharmacology. 113:132-141. https://doi.org/10.1016/j.jep.2007.05.020
-
Edberg SC, Trepeta RW, Kontnick CM and Torres AR. (1985). Measurement of active constitutive
$\beta$ -D-glucosidase(esculinase) in the presence of sodium desoxycholate. Journal of Clinical Microbiology. 21:363-365. https://doi.org/10.1128/JCM.21.3.363-365.1985 - Goh EJ, Seong ES, Lee JG, Na JK, Lim JD, Kim MJ, Kim NY, Lee GH, Seo JS, Cheoi SD, Chung IM and Yu CY. (2009). Antioxidant activities according to peeling and cultivated years of Astragalus membranaceus roots. Korean Journal of Medicinal Crop Science. 17:233-237.
- Hirotani M, Zhou Y, Lui H and Furuya T. (1994). Astragalosides from hairy root cultures of Astragalus membranaceus. Phytochemistry. 36:665-670. https://doi.org/10.1016/S0031-9422(00)89793-9
- Hsu C, Wu B, Chang Y, Chang C, Chiou T and Su N. (2018). Phosphorylation of isoflavones by Bacillus subtilis BCRC 80517 may represent xenobiotic metabolism. Journal of Agricultural and Food Chemistry. 66:127-137. https://doi.org/10.1021/acs.jafc.7b04647
- Hsu M and Chiang B. (2009). Effect of Bacillus subtilis natto-fermented radix astragali on collagen production in human skin fibroblasts. Process Biochemistry. 44:83-90. https://doi.org/10.1016/j.procbio.2008.09.021
- Ibe S, Kumada K, Yoshiba M and Onga T. (2001). Production of nattowhich contains a high level of isoflavone aglycons. Journal of the Japanese Society for Food Science and Technolgy. 48:27-34. https://doi.org/10.3136/nskkk.48.27
- Im KR, Kim MJ, Jung TK and Yoon KS. (2010). Analysis of isoflavonoid contents in Astragalus membranaceus bunge cultivated in different areas and at various ages. Korean Society for Biotechnology and Bioengineering Journal. 25:271-276.
- Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y and Kikuchi M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition. 130:1695-1699. https://doi.org/10.1093/jn/130.7.1695
- Kim JH, Kim MR, Lee ES and Lee CH. (2009). Inhibitory effects of calycosin isolated from the root of Astragalus membranaceus on melanin biosynthesis. Biological and Pharmaceutical Bulletin. 32:264-268. https://doi.org/10.1248/bpb.32.264
- Kim MJ, Lim KR, Jung TK and Yoon KS. (2007). Anti-aging effect of Astragalus membranaceus root extract. Journal of the Society of Cosmetic Scientists of Korea. 33:33-40.
- Kong X, Wang F, Niu Y, Wu X and Pan Y. (2018). A comparative study on the effect of promoting the osteogenic function of osteoblasts using isoflavones from Radix Astragalus. Phytotherapy Research. 32:115-124. https://doi.org/10.1002/ptr.5955
- Kuo L, Cheng W, Wu R, Huang C and Lee K. (2006). Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Applied Microbiology and Biotechnology. 73:314-320. https://doi.org/10.1007/s00253-006-0474-7
- Lee SH, Koo SC, Han JW, Lee WM and Hur M. (2018a). Selection of short stem Astragalus membranaceus lines by assessing agronomic characteristics and biological activity. Korean Journal of Medicinal Crop Science. 26:471-476. https://doi.org/10.7783/KJMCS.2018.26.6.471
- Lee SY, Lee HN, Go EJ, Park YC, Choi SK, Yu CY and Lim JD. (2018b). Effect of Astragalus membranaceus polysaccharides on improves immune response after exhaustive exercise rats. Korean Journal of Medicinal Crop Science. 26:72-81. https://doi.org/10.7783/KJMCS.2018.26.1.72
- Lin L, He X, Lindenmaier M, Nolan G, Yang J, Cleary M and Cordell G. (2000). Liquid chromatography-electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. Journal of Chromatography A. 876:87-95. https://doi.org/10.1016/S0021-9673(00)00149-7
- Lindell SS and Quinn P. (1975). Use of bile-esculin agar for rapid differentiation of enterobacteriaceae. Journal of Clinical Microbiology. 1:440-443. https://doi.org/10.1128/JCM.1.5.440-443.1975
-
Pan H, Fang C, Zhou T, Wang Q and Chen J. (2007). Accumulation of calycosin and its 7-O-
$\beta$ -D-glucoside and related gene expression in seedlings of Astragalus membranaceus Bge. var. mongholicus(Bge.) Hsiao induced by low temperature stress. Plant Cell Reports. 26:1111-1120. https://doi.org/10.1007/s00299-006-0301-8 - Park JY, Lee JY, Kim HD, Jang GY and Seo KH. (2019). Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting. Journal of Nutrition and Health. 52:413-421. https://doi.org/10.4163/jnh.2019.52.5.413
- Park YC, Lee JS, Kim DY, Son HY, Lee JW, Cheoi YS, Kim KK, Yu CY, Chung IM, Im MH, Lee KJ, Choi RN, Shim HS and Lim JD. (2013). A 90 day repeated dose-oral toxicity study of extracts from Astragalus membranaceus-aboveground parts in rats. Korean Journal of Medicinal Crop Science. 21:474-485. https://doi.org/10.7783/KJMCS.2013.21.6.474
-
Ra KS, Oh SH, Kim JM and Suh HJ. (2004). Isolation of fibrinolytic enzyme and
$\beta$ -glucosidase producing strains from doenjang and optimum conditions of enzyme production. Journal Korean Society of Food Science and Nutrition. 33:439-442. https://doi.org/10.3746/jkfn.2004.33.2.439 - Re R, Pellegrini N, Proteggente A, Pannala A, Yang M and Rice-Evans C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
-
Shim KS, Park GG and Park YS. (2014). Bioconversion of puffed red ginseng extract using
$\beta$ -glucosidase-producing lactic acid bacteria. Food Engineering Progress. 18:332-340. https://doi.org/10.13050/foodengprog.2014.18.4.332 - Wagle A, Seong SH, Jung HA and Choi JS. (2019). Identifying an isoflavone from the root of Pueraria lobata as a potent tyrosinase inhibitor. Food Chemistry. 276:383-389. https://doi.org/10.1016/j.foodchem.2018.10.008
- Wang F, Zhao S, Li F, Zhang B, Qu Y, Sun T, Luo T and Li D. (2014). Investigation of antioxidant interactions between radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds. Plos One. 9:87221. https://doi.org/10.1371/journal.pone.0087221 (cited by 2020 July 20).
- Wang X, Fan R, Li J, Li C and Zhang Y. (2016). Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4′,7-O-diglucoside Glucosyltransferase from Pueraria lobata. Frontiers in plant science. 7:387. https://doi.org/10.3389/fpls.2016.00387 (cited by 2020 July 19).
- Wang X. (2011). Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Functional Integrative Genomics 11:13-22. https://doi.org/10.1007/s10142-010-0197-9
- Wunsch E and Heidrich HG. (1963). Zur quantitativen bestimmung der kollagenase. Hoppe-Seyler's Zeitschrift fur physiologische Chemie. 333:149-151. https://doi.org/10.1515/bchm2.1963.333.1.149
- Yagi A, Kanbara T and Morinobu N. (1986). The effect of tyrosinase inhibition for aloe. Planta Medica. 3981:517-519.
- Yang SJ, Lee SY, Lee HN, Park YC, Choi SK, Yu CY, Chung IM and Lim JD. (2016). Adjuvant effect of polysaccharides from aboveground parts of Astragalus membranaceus. Korean Journal of Medicinal Crop Science. 24:408-419. https://doi.org/10.7783/KJMCS.2016.24.5.408