References
- Al-Megren, S. (2018). A predictive fingerstroke-level model for smartwatch interaction. Multimodal Technologies and Interaction, 2(3), 38. doi:10.3390/mti2030038
- Berger, M. A. M., Krul, A. J., & Daanen, H. A. M. (2009). Task specificity of finger dexterity tests. Applied Ergonomics, 40(1), 145-147. doi:10.1016/j.apergo.2008.01.014
- Choi, J. W. (2006). Study on parameters for prediction thermal insulation of clothing. National Research Foundation (NRF), Final Report, p177.
- Daanen, H. A. M. (2009). Manual performance deterioration in the cold estimated using the wind chill equivalent temperature. Industrial Health, 47(3), 262-270. doi:10.2486/indhealth.47.262
- Fukazawa, T., & Tochihara, Y. (2015). The thermal manikin; a useful and effective for evaluating human thermal environments. Journal of the Human-Environment System, 18(1), 21-28. doi:10.1618/jhes.18.021
- Havenith, G., Heus, R., & Daanen, H. A. (1995). The hand in the cold, performance and risk. Arctic Medical Research, 54(2), 37-47.
- Heus, R., Daanen, H. A. M., & Havenith, G. (1995). Physiological criteria for functioning of hands in the cold - A review. Applied Ergonomics, 26(1), 5-13. doi:10.1016/0003-6870(94)00004-I
- Hu, L., Pasta, M., Mantia, F., Cui, L., Jeong, S., Deshazer, H., & Cui, Y. (2010). Stretchable, porous, and conductive energy textiles. Nano Letters, 10(2), 708-714. doi:10.1021/nl903949m
- Irzmanska, E., Wojcik, P., & Adamus-Wlodarczyk, A. (2018). Manual work in cold environments and its impact on selection of materials for protective gloves based on workplace observations. Applied Ergonomics, 68, 186-196. doi:10.1016/j.apergo.2017.11.007
- ISO 9241-110. (2006). Ergonomics of human-system interaction - Part 110: Dialogue principals. International Standard Organization.
- Jun, H., Choi, W. & Pan, Y. (2008). A study on user behavior of input method for touch screen mobile phone. Proceedings of HCI Society of Korea, February, Korea, 2, pp. 1023-1028.
- Kim, B., Kincar, V., Devaux, E., Dufour, C., & Vilallier, P. (2004). Electrical and morphological properties of PP and PET conductive polymer fibers. Synthetic Metals, 146(2), 167-174. doi:10.1177/1528083719883048
-
Kim, D. M., Kim, D. H., & Lee, J. Y. (2017). Wear comfort of firefighters protective gloves in dry and wet conditions at
$70^{\circ}C$ air temperature with radiant heat. Journal of Korean Society of Living Environmental System, 24(1), 95-106. doi:10.21086/ksles.2017.02.24.1.95 - Kim, D. M., Lee, I. S., & Lee, J. Y. (2016). Mobility evaluation of popular firefighting protective gloves in domestic and foreign countries -Don-doff test, dexterity test, and torque test-. Journal of the Korean Society of Clothing and Textiles, 40(5), 921-935. doi:10.5850/JKSCT.2016.40.5.921
- Kim, H., Song, H. W., & Park, S. H. (2014). Proper response times and design factors influencing user satisfaction with diverse touch tap operations for the smartphone. Archives of Design Research, 27(2), 95-105. doi:10.15187/adr.2014.05.110.2.95
- Koo, H., & Janigo, K. (2017). Development of conductive gloves for touchscreen devices. International Journal of Fashion Design Technology and Education, 10(1), 71-80. doi:10.1080/17543266.2016.1194484
- KS K 0539. (1969). Test methods for stiffness of fabrics. Korean Standards Association.
- KS K ISO 5084. (1996). Textiles-Determination of thickness of textiles and textiles products. Korean Standards Association.
- Muller, M. D., Ryan, E. J., Bellar, D. M., Kim, C. H., Blankfield, R. P., Muller, S. M., & Glickman, E. L. (2010). The influence of interval versus continuous exercise on thermoregulation, torso hemodynamics, and finger dexterity in the cold. European Journal of Applied Physiology, 109(5), 857-867. doi:10.1007/s00421-010-1416-8
- Potter, A. W., Gonzalez, J. A., Carter, A. J., Looney, D. P., Rioux, T. P., Srinivasan, S., Sullivan-Kwantes, W., & Xu, X. (2018). Comparison of cold weather clothing biophysical properties: US army, Canadian department of national defence, and Norwegian military. U.S. Army Research Institute of Environmental Medicine, Technical report No. T18-02. Retrieved August 27, 2020, from https://apps.dtic.mil/dtic/tr/fulltext/u2/1051229.pdf
- Roda-Sales, A., Sancho-Bru, J., Vergara, M., Gracia-Ibanez, V., & Jarque-Bou, N. J. (2020). Effect on manual skills of wearing instrumented gloves during manipulation. Journal of Biomechanics, 98, 109512. doi:10.1016/j.jbiomech.2019.109512
- Sari, H., Gartner, M., Hoeft, A., & Candas, V. (2004). Glove thermal insulation: Local heat transfer measures and relevance. European Journal of Applied Physiology, 92(6), 702-705. doi:10.1007/s00421-004-1136-z
- Sawyer, J., & Bennett, A. (2006). Comparing the level of dexterity offered by latex and nitrile SafeSkin gloves. Annals of Occupational Hygiene, 50(3), 289-296. doi:10.1093/annhyg/mei066
- Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles - A critical review. Sensors, 14(7), 11957-11992. doi:10.3390/s140711957
- The American Society for Testing and Materials. (2010). Standard test method for evaluation of glove effects on wearer hand dexterity using a modified pegboard test (ASTM F2010). ASTM International, United States. Retrieved August 27, 2020, from http://www.astm.org/Standards/F2010.htm
- Tiffin, J., & Asher, E. J. (1948). The Purdue Pegboard: Norms and studies of reliability and validity. Journal of Applied Psychology, 32(3), 234-247. doi:10.1037/h0061266
- Watkins, S. M. (1995). Clothing: The portable environment. Iowa: Iowa State Press.
- Wegene, J. D., & Thanikaivelan, P. (2014). Conducting leathers for smart product applications. Industrial & Engineering Chemistry Research, 53(47), 18209-18215. doi:10.1021/ie503956p
- Woodson, W. E. (1987). Human factors reference guide for process plants. London: McGraw-Hill.