DOI QR코드

DOI QR Code

A Systematic Review on Smart Manufacturing in the Garment Industry

  • Kim, Minsuk (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Ahn, Jiseon (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Kang, Jihye (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Kim, Sungmin (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University)
  • Received : 2020.08.28
  • Accepted : 2020.10.23
  • Published : 2020.10.31

Abstract

Since Industry 4.0, there is a growing interest in smart manufacturing across all industries. However, there are few studies on this topic in the garment industry despite the growing interest in implementing smart manufacturing. This paper presents the feasibility and essential considerations for implementing smart manufacturing in the garment industry. A systematic review analysis was conducted. Studies on garment manufacturing and smart manufacturing were searched separately in the Scopus database. Key technologies for each manufacturing were derived by keyword analysis. Studies on key technologies in each manufacturing were selected; in addition, bibliographic analysis and cluster analysis were conducted to understand the progress of technological development in the garment industry. In garment manufacturing, technology studies are rare as well as locally biased. In addition, there are technological gaps compared to other manufacturing. However, smart manufacturing studies are still in their infancy and the direction of garment manufacturing studies are toward smart manufacturing. More studies are needed to apply the key technologies of smart manufacturing to garment manufacturing. In this case, the progress of technology development, the difference in the industrial environment, and the level of implementation should be considered. Human components should be integrated into smart manufacturing systems in a labor-intensive garment manufacturing process.

Keywords

References

  1. Brad, S., Murar, M., & Brad, E. (2018). Design of smart connected manufacturing resources to enable changeability, recon- figurability and total-cost-of-ownership models in the factory-of-the-future. International Journal of Production Research, 56(6), 2269-2291. doi:10.1080/00207543.2017.1400705
  2. Briner, R. B., & Denyer, D. (2012). Systematic review and evidence synthesis as a practice and scholarship tool. In Rousseau, D. M. (Eds.), Handbook of evidence-based management: Companies, classrooms and research (pp. 112-129). New York: Oxford University Press.
  3. Chen, J. C., Chen, C. C., Su, L. H., Wu, H. B., & Sun, C. J. (2012). Assembly line balancing in garment industry. Expert Systems with Applications, 39(11), 10073-10081. doi:10.1016/j.eswa.2012.02.055
  4. Chiang, Y., & Lee, D. (2017). Smart manufacturing with the internet of makers. Journal of the Chinese Institute of Engineers, 40(7), 585-592. doi:10.1080/02533839.2017.1362324
  5. Choi, S. S., Kang, G. H., Jun, C. M., Lee, J. Y., & Han, S. J. (2017). Cyber-physical systems: a case study of development for manufacturing industry. International Journal of Computer Applications in Technology, 55(4), 289-297. doi:10.1504/IJCAT.2017.10006845
  6. Choi, T. M., Yeung, W. K., Cheng, T. E., & Yue, X. (2018). Optimal scheduling, coordination, and the value of RFID technology in garment manufacturing supply chains. IEEE Transactions on engineering Management, 65(1), 72-84. doi:10.1109/TEM.2017.2739799
  7. D'Emilia, G., Gaspari, A., & Natale, E. (2018, April). Measurements for smart manufacturing in an Industry 4.0 scenario a case-study on a mechatronic system. In 2018 Workshop on Metrology for Industry 4.0 and IoT (pp. 1-5). IEEE. doi:10.1109/METROI4.2018.8428341
  8. De Felice, F., Petrillo, A., & Zomparelli, F. (2018). Prospective design of smart manufacturing: An Italian pilot case study. Manufacturing Letters, 15, 81-85. doi:10.1016/j.mfglet.2017.12.002
  9. Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman. (Eds.), The SAGE Handbook of Organizational Research Methods (pp. 671-689). London: SAGE.
  10. Guo, J., Zhao, N., Sun, L., & Zhang, S. (2019). Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1189-1200. doi:10.1007/s12652-018-0953-6
  11. Guo, Z. X., Wong, W. K., & Guo, C. (2014). A cloud-based intelligent decision-making system for order tracking and allocation in apparel manufacturing. International Journal of Production Research, 52(4), 1100-1115. doi:10.1080/00207543.2013.838650
  12. Guo, Z., Ngai, E., Yang, C., & Liang, X. (2015). An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. International Journal of Production Economics, 159, 16-28. doi:10.1016/j.ijpe.2014.09.004
  13. Hui, P. L., Chan, K. C., Yeung, K. W., & Ng, F. F. (2002). Fuzzy operator allocation for balance control of assembly lines in apparel manufacturing. IEEE Transactions on Engineering Management, 49(2), 173-180. doi:10.1109/TEM.2002.1010885
  14. Kang, Y. S., Park, I. H., & Youm, S. (2016). Performance prediction of a MongoDB-based traceability system in smart factory supply chains. Sensors, 16(12), 2126. doi:10.3390/s16122126
  15. Kursun, S., & Kalaoglu, F. (2009). Simulation of production line balancing in apparel manufacturing. Fibres & Textiles in Eastern Europe, 17(4), 68-71.
  16. Kwong, C. K., Mok, P. Y., & Wong, W. K. (2006). Determination of fault-tolerant fabric-cutting schedules in a just-in-time apparel manufacturing environment. International Journal of Production Research, 44(21), 4465-4490. doi:10.1080/00207540600597047
  17. Lee, C. K. H., Choy, K. L., Law, K. M. Y., & Ho, G. T. S. (2012, December). An intelligent system for production resources planning in Hong Kong garment industry. In 2012 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 889-893). IEEE. doi:10.1109/IEEM.2012.6837868
  18. Lee, C. K. H., Choy, K. L., Ho, G. T., & Law, K. M. Y. (2013). A RFID-based resource allocation system for garment manufacturing. Expert Systems with Applications, 40(2), 784-799. doi:10.1016/j.eswa.2012.08.033
  19. Lee, C. K. H., Ho, G. T. S., Choy, K. L., & Pang, G. K. H. (2014a). A RFID-based recursive process mining system for quality assurance in the garment industry. International Journal of Production Research, 52(14), 4216-4238. doi:10.1080/00207543.2013.869632
  20. Lee, C. K. H., Choy, K. L., Law, K. M. Y., & Ho, G. T. S. (2014b). Application of intelligent data management in resource allocation for effective operation of manufacturing systems. Journal of Manufacturing Systems, 33(3), 412-422. doi:10.1016/j.jmsy.2014.02.002
  21. Lee, C. K. H., Choy, K. L., Ho, G. T., & Lam, C. H. (2016). A slippery genetic algorithm-based process mining system for achieving better quality assurance in the garment industry. Expert systems with Applications, 46, 236-248. doi:10.1016/j.eswa.2015.10.035
  22. Lee, J. Y., Yoon, J. S., & Kim, B. H. (2017). A big data analytics platform for smart factories in small and medium-sized manufacturing enterprises: An empirical case study of a die casting factory. International Journal of Precision Engineering and Manufacturing, 18(10), 1353-1361. doi:10.1007/s12541-017-0161-x
  23. Lin, M. T. (2009). The single-row machine layout problem in apparel manufacturing by hierarchical order-based genetic algorithm. International Journal of Clothing Science and Technology, 21(1), 31-43. doi:10.1108/09556220810898872
  24. Lin, P., Li, M., Kong, X., Chen, J., Huang, G. Q., & Wang, M. (2018). Synchronisation for smart factory-towards IoT- enabled mechanisms. International Journal of Computer Integrated Manufacturing, 31(7), 624-635. doi:10.1080/0951192X.2017.1407445
  25. Lin, Y. C., Hung, M. H., Huang, H. C., Chen, C. C., Yang, H. C., Hsieh, Y. S., & Cheng, F. T. (2017). Development of advanced manufacturing cloud of things (AMCoT) -A smart manufacturing platform. IEEE Robotics and Automation Letters, 2(3), 1809-1816. doi:10.1109/LRA.2017.2706859
  26. Loo, G. S., Tang, B. C., & Janczewski, L. (2000, September). An adaptable human-agent collaboration information system in manufacturing (HACISM). In Proceedings 11th International Workshop on Database and Expert Systems Applications (pp. 445-449). IEEE. doi:10.1109/DEXA.2000.875064
  27. Lu, Y., Peng, T., & Xu, X. (2019). Energy-efficient cyber-physical production network: Architecture and technologies. Computers & Industrial Engineering, 129, 56-66. doi:10.1016/j.cie.2019.01.025
  28. Lu, Y., & Xu, X. (2018). Resource virtualization: a core technology for developing cyber-physical production systems. Journal of Manufacturing Systems, 47, 128-140. doi:10.1016/j.jmsy.2018.05.003
  29. M'Hallah, R., & Bouziri, A. (2016). Heuristics for the combined cut order planning two?dimensional layout problem in the apparel industry. International Transactions in Operational Research, 23(1-2), 321-353. doi:10.1111/itor.12104
  30. Menezes, S., Creado, S., & Zhong, R. Y. (2018). Smart manufacturing execution systems for small and medium-sized enterprises. Procedia CIRP, 72, 1009-1014. doi:10.1016/j.procir.2018.03.272
  31. Mok, P. Y., Cheung, T. Y., Wong, W. K., Leung, S. Y. S., & Fan, J. T. (2013). Intelligent production planning for complex garment manufacturing. Journal of Intelligent Manufacturing, 24(1), 133-145. doi:10.1007/s10845-011-0548-y
  32. Monostori, L. (2018). Cyber-physical systems. The International Academy for Production (Eds.), CIRP Encyclopedia of Production Engineering (pp. 1-7). Berlin: Springer.
  33. Montoya-Torres, J. R., & Vargas-Nieto, F. (2011). Solving a bi-criteria hybrid flowshop scheduling problem occurring in apparel manufacturing. International Journal of Information Systems and Supply Chain Management, 4(2), 42-60. doi:10.4018/jisscm.2011040103
  34. Moyne, J., & Iskandar, J. (2017). Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes, 5(3), 39. doi:10.3390/pr5030039
  35. Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in cps-based production systems. Procedia Manufacturing, 11, 939-948. doi:10.1016/j.promfg.2017.07.198
  36. Nino, M., Blanco, J. M., & Illarramendi, A. (2015, October). Business understanding, challenges and issues of Big Data Analytics for the servitization of a capital equipment manufacturer. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 1368-1377). IEEE. doi:10.1109/BigData.2015.7363897
  37. Nino, M., Saenz, F., Blanco, J. M., & Illarramendi, A. (2016, July). Requirements for a big data capturing and integration architecture in a distributed manufacturing scenario. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (pp. 1326-1329). IEEE. doi:10.1109/INDIN.2016.7819372
  38. Peruzzini, M., & Pellicciari, M. (2017). A framework to design a human-centred adaptive manufacturing system for aging workers. Advanced Engineering Informatics, 33, 330-349. doi:10.1016/j.aei.2017.02.003
  39. Pirvu, B. C., Zamfirescu, C. B., & Gorecky, D. (2016). Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 34, 147-159. doi:10.1016/j.mechatronics.2015.08.010
  40. Rauch, E., Linder, C., & Dallasega, P. (2019). Anthropocentric perspective of production before and within Industry 4.0. Computers & Industrial Engineering, 139, 105644 doi:10.1016/j.cie.2019.01.018
  41. Saldivar, A. A. F., Goh, C., Chen, W. N., & Li, Y. (2016a, July). Self-organizing tool for smart design with predictive customer needs and wants to realize Industry 4.0. In 2016 IEEE congress on evolutionary computation (CEC) (pp. 5317-5324). IEEE. doi:10.1109/CEC.2016.7748366
  42. Saldivar, A. A. F., Goh, C., Li, Y., Chen, Y., & Yu, H. (2016b, September). Identifying smart design attributes for Industry 4.0 customization using a clustering Genetic Algorithm. In 2016 22nd International Conference on Automation and Computing (ICAC) (pp. 408-414). IEEE. doi:10.1109/IConAC.2016.7604954
  43. Savazzi, S., Rampa, V., & Spagnolini, U. (2014). Wireless cloud networks for the factory of things: Connectivity modeling and layout design. IEEE Internet of Things Journal, 1(2), 180-195. doi:10.1109/JIOT.2014.2313459
  44. Shellshear, E., Berlin, R., & Carlson, J. S. (2015). Maximizing smart factory systems by incrementally updating point clouds. IEEE Computer Graphics and Applications, 35(2), 62-69. doi: 10.1109/MCG.2015.38
  45. Tao, F., Tang, Y., Zou, X., & Qi, Q. (2019). A field program-mable gate array implemented fibre channel switch for big data communication towards smart manufacturing. Robotics and Computer-Integrated Manufacturing, 57, 166-181. doi:10.1016/j.rcim.2018.12.005
  46. Tarallo, A., Mozzillo, R., Di Gironimo, G., & De Amicis, R. (2018). A cyber-physical system for production monitoring of manual manufacturing processes. International Journal on Interactive Design and Manufacturing, 12(4), 1235-1241. doi:10.1007/s12008-018-0493-5
  47. Thompson, K. D. (2014, April 25). Smart manufacturing operations planning and control program. NIST. Retrieved August 27, 2020, from https://www.nist.gov/programs-projects/smart-manufacturing-operations-planning-and-control-program
  48. Wong, W. K., Chan, C. K., & Ip, W. H. (2000). Optimization of spreading and cutting sequencing model in garment manufacturing. Computers in Industry, 43(1), 1-10. doi:10.1016/S0166-3615(00)00057-9
  49. Wong, W. K., Chan, C. K., & Ip, W. H. (2001). A hybrid flowshop scheduling model for apparel manufacture. International Journal of Clothing Science and Technology, 13(2), 115-131. doi:10.1108/09556220110390737
  50. Wong, W. K. (2003a). A selection of a fabric-cutting system configuration in different types of apparel manufacturing environments. The International Journal of Advanced Manufacturing Technology, 22(9-10), 641-648. doi:10.1007/s00170-003-1567-4
  51. Wong, W. K. (2003b). Optimisation of apparel manufacturing resource allocation using a generic optimised table-planning model. The International Journal of Advanced Manufacturing Technology, 21(12), 935-944. doi:10.1007/s00170-002-1414-z
  52. Wong, W. K., Chan, C. K., Kwong, C. K., Mok, P. Y., & Ip, W. H. (2005a). Optimization of manual fabric-cutting process in apparel manufacture using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 27(1-2), 152-158. doi:10.1007/s00170-004-2161-0
  53. Wong, W. K., Leung, S. Y. S., & Au, K. F. (2005b). Real-time GA-based rescheduling approach for the pre-sewing stage of an apparel manufacturing process. The International Journal of Advanced Manufacturing Technology, 25(1-2), 180-188. doi:10.1007/s00170-003-1819-3
  54. Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access, 7, 19990-19999. doi:0.1109/ACCESS.2018.2890566 https://doi.org/10.1109/ACCESS.2018.2890566
  55. Yoon, S., Um, J., Suh, S. H., Stroud, I., & Yoon, J. S. (2019). Smart Factory Information Service Bus (SIBUS) for manufacturing application: Rquirement, architecture and implementation. Journal of Intelligent Manufacturing, 30(1), 363-382. doi:10.1007/s10845-016-1251-9
  56. Zamfirescu, C. B., Pirvu, B. C., Schlick, J., & Zuehlke, D. (2013). Preliminary insides for an anthropocentric cyber-physical reference architecture of the smart factory. Studies in Informatics and Control, 22(3), 269-278. doi:10.24846/v22i3y201303
  57. Zeng, X., Wong, W. K., & Leung, S. Y. S. (2012). An operator allocation optimization model for balancing control of the hybrid assembly lines using Pareto utility discrete differential evolution algorithm. Computers & Operations Research, 39(5), 1145-1159. doi:10.1016/j.cor.2011.07.020
  58. Zhang, Y., Wang, W., Wu, N., & Qian, C. (2016). IoT-enabled real-time production performance analysis and exception diagnosis model. IEEE Transactions on Automation Science and Engineering, 13(3), 1318-1332. doi:10.1109/TASE.2015.2497800
  59. Zheng, M., & Ming, X. (2017). Construction of cyber-physical system-integrated smart manufacturing workshops: A case study in automobile industry. Advances in Mechanical Engineering, 9(10), 1-17. doi:10.1177/1687814017733246
  60. Zhong, R. Y. (2018, March). Analysis of RFID datasets for smart manufacturing shop floors. In 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC) (pp. 1-4). IEEE. doi:10.1109/ICNSC.2018.8361321
  61. Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: A review. Engineering, 3(5), 616-630. doi:10.1016/J.ENG.2017.05.015