References
- Brad, S., Murar, M., & Brad, E. (2018). Design of smart connected manufacturing resources to enable changeability, recon- figurability and total-cost-of-ownership models in the factory-of-the-future. International Journal of Production Research, 56(6), 2269-2291. doi:10.1080/00207543.2017.1400705
- Briner, R. B., & Denyer, D. (2012). Systematic review and evidence synthesis as a practice and scholarship tool. In Rousseau, D. M. (Eds.), Handbook of evidence-based management: Companies, classrooms and research (pp. 112-129). New York: Oxford University Press.
- Chen, J. C., Chen, C. C., Su, L. H., Wu, H. B., & Sun, C. J. (2012). Assembly line balancing in garment industry. Expert Systems with Applications, 39(11), 10073-10081. doi:10.1016/j.eswa.2012.02.055
- Chiang, Y., & Lee, D. (2017). Smart manufacturing with the internet of makers. Journal of the Chinese Institute of Engineers, 40(7), 585-592. doi:10.1080/02533839.2017.1362324
- Choi, S. S., Kang, G. H., Jun, C. M., Lee, J. Y., & Han, S. J. (2017). Cyber-physical systems: a case study of development for manufacturing industry. International Journal of Computer Applications in Technology, 55(4), 289-297. doi:10.1504/IJCAT.2017.10006845
- Choi, T. M., Yeung, W. K., Cheng, T. E., & Yue, X. (2018). Optimal scheduling, coordination, and the value of RFID technology in garment manufacturing supply chains. IEEE Transactions on engineering Management, 65(1), 72-84. doi:10.1109/TEM.2017.2739799
- D'Emilia, G., Gaspari, A., & Natale, E. (2018, April). Measurements for smart manufacturing in an Industry 4.0 scenario a case-study on a mechatronic system. In 2018 Workshop on Metrology for Industry 4.0 and IoT (pp. 1-5). IEEE. doi:10.1109/METROI4.2018.8428341
- De Felice, F., Petrillo, A., & Zomparelli, F. (2018). Prospective design of smart manufacturing: An Italian pilot case study. Manufacturing Letters, 15, 81-85. doi:10.1016/j.mfglet.2017.12.002
- Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman. (Eds.), The SAGE Handbook of Organizational Research Methods (pp. 671-689). London: SAGE.
- Guo, J., Zhao, N., Sun, L., & Zhang, S. (2019). Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1189-1200. doi:10.1007/s12652-018-0953-6
- Guo, Z. X., Wong, W. K., & Guo, C. (2014). A cloud-based intelligent decision-making system for order tracking and allocation in apparel manufacturing. International Journal of Production Research, 52(4), 1100-1115. doi:10.1080/00207543.2013.838650
- Guo, Z., Ngai, E., Yang, C., & Liang, X. (2015). An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. International Journal of Production Economics, 159, 16-28. doi:10.1016/j.ijpe.2014.09.004
- Hui, P. L., Chan, K. C., Yeung, K. W., & Ng, F. F. (2002). Fuzzy operator allocation for balance control of assembly lines in apparel manufacturing. IEEE Transactions on Engineering Management, 49(2), 173-180. doi:10.1109/TEM.2002.1010885
- Kang, Y. S., Park, I. H., & Youm, S. (2016). Performance prediction of a MongoDB-based traceability system in smart factory supply chains. Sensors, 16(12), 2126. doi:10.3390/s16122126
- Kursun, S., & Kalaoglu, F. (2009). Simulation of production line balancing in apparel manufacturing. Fibres & Textiles in Eastern Europe, 17(4), 68-71.
- Kwong, C. K., Mok, P. Y., & Wong, W. K. (2006). Determination of fault-tolerant fabric-cutting schedules in a just-in-time apparel manufacturing environment. International Journal of Production Research, 44(21), 4465-4490. doi:10.1080/00207540600597047
- Lee, C. K. H., Choy, K. L., Law, K. M. Y., & Ho, G. T. S. (2012, December). An intelligent system for production resources planning in Hong Kong garment industry. In 2012 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 889-893). IEEE. doi:10.1109/IEEM.2012.6837868
- Lee, C. K. H., Choy, K. L., Ho, G. T., & Law, K. M. Y. (2013). A RFID-based resource allocation system for garment manufacturing. Expert Systems with Applications, 40(2), 784-799. doi:10.1016/j.eswa.2012.08.033
- Lee, C. K. H., Ho, G. T. S., Choy, K. L., & Pang, G. K. H. (2014a). A RFID-based recursive process mining system for quality assurance in the garment industry. International Journal of Production Research, 52(14), 4216-4238. doi:10.1080/00207543.2013.869632
- Lee, C. K. H., Choy, K. L., Law, K. M. Y., & Ho, G. T. S. (2014b). Application of intelligent data management in resource allocation for effective operation of manufacturing systems. Journal of Manufacturing Systems, 33(3), 412-422. doi:10.1016/j.jmsy.2014.02.002
- Lee, C. K. H., Choy, K. L., Ho, G. T., & Lam, C. H. (2016). A slippery genetic algorithm-based process mining system for achieving better quality assurance in the garment industry. Expert systems with Applications, 46, 236-248. doi:10.1016/j.eswa.2015.10.035
- Lee, J. Y., Yoon, J. S., & Kim, B. H. (2017). A big data analytics platform for smart factories in small and medium-sized manufacturing enterprises: An empirical case study of a die casting factory. International Journal of Precision Engineering and Manufacturing, 18(10), 1353-1361. doi:10.1007/s12541-017-0161-x
- Lin, M. T. (2009). The single-row machine layout problem in apparel manufacturing by hierarchical order-based genetic algorithm. International Journal of Clothing Science and Technology, 21(1), 31-43. doi:10.1108/09556220810898872
- Lin, P., Li, M., Kong, X., Chen, J., Huang, G. Q., & Wang, M. (2018). Synchronisation for smart factory-towards IoT- enabled mechanisms. International Journal of Computer Integrated Manufacturing, 31(7), 624-635. doi:10.1080/0951192X.2017.1407445
- Lin, Y. C., Hung, M. H., Huang, H. C., Chen, C. C., Yang, H. C., Hsieh, Y. S., & Cheng, F. T. (2017). Development of advanced manufacturing cloud of things (AMCoT) -A smart manufacturing platform. IEEE Robotics and Automation Letters, 2(3), 1809-1816. doi:10.1109/LRA.2017.2706859
- Loo, G. S., Tang, B. C., & Janczewski, L. (2000, September). An adaptable human-agent collaboration information system in manufacturing (HACISM). In Proceedings 11th International Workshop on Database and Expert Systems Applications (pp. 445-449). IEEE. doi:10.1109/DEXA.2000.875064
- Lu, Y., Peng, T., & Xu, X. (2019). Energy-efficient cyber-physical production network: Architecture and technologies. Computers & Industrial Engineering, 129, 56-66. doi:10.1016/j.cie.2019.01.025
- Lu, Y., & Xu, X. (2018). Resource virtualization: a core technology for developing cyber-physical production systems. Journal of Manufacturing Systems, 47, 128-140. doi:10.1016/j.jmsy.2018.05.003
- M'Hallah, R., & Bouziri, A. (2016). Heuristics for the combined cut order planning two?dimensional layout problem in the apparel industry. International Transactions in Operational Research, 23(1-2), 321-353. doi:10.1111/itor.12104
- Menezes, S., Creado, S., & Zhong, R. Y. (2018). Smart manufacturing execution systems for small and medium-sized enterprises. Procedia CIRP, 72, 1009-1014. doi:10.1016/j.procir.2018.03.272
- Mok, P. Y., Cheung, T. Y., Wong, W. K., Leung, S. Y. S., & Fan, J. T. (2013). Intelligent production planning for complex garment manufacturing. Journal of Intelligent Manufacturing, 24(1), 133-145. doi:10.1007/s10845-011-0548-y
- Monostori, L. (2018). Cyber-physical systems. The International Academy for Production (Eds.), CIRP Encyclopedia of Production Engineering (pp. 1-7). Berlin: Springer.
- Montoya-Torres, J. R., & Vargas-Nieto, F. (2011). Solving a bi-criteria hybrid flowshop scheduling problem occurring in apparel manufacturing. International Journal of Information Systems and Supply Chain Management, 4(2), 42-60. doi:10.4018/jisscm.2011040103
- Moyne, J., & Iskandar, J. (2017). Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes, 5(3), 39. doi:10.3390/pr5030039
- Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in cps-based production systems. Procedia Manufacturing, 11, 939-948. doi:10.1016/j.promfg.2017.07.198
- Nino, M., Blanco, J. M., & Illarramendi, A. (2015, October). Business understanding, challenges and issues of Big Data Analytics for the servitization of a capital equipment manufacturer. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 1368-1377). IEEE. doi:10.1109/BigData.2015.7363897
- Nino, M., Saenz, F., Blanco, J. M., & Illarramendi, A. (2016, July). Requirements for a big data capturing and integration architecture in a distributed manufacturing scenario. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (pp. 1326-1329). IEEE. doi:10.1109/INDIN.2016.7819372
- Peruzzini, M., & Pellicciari, M. (2017). A framework to design a human-centred adaptive manufacturing system for aging workers. Advanced Engineering Informatics, 33, 330-349. doi:10.1016/j.aei.2017.02.003
- Pirvu, B. C., Zamfirescu, C. B., & Gorecky, D. (2016). Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 34, 147-159. doi:10.1016/j.mechatronics.2015.08.010
- Rauch, E., Linder, C., & Dallasega, P. (2019). Anthropocentric perspective of production before and within Industry 4.0. Computers & Industrial Engineering, 139, 105644 doi:10.1016/j.cie.2019.01.018
- Saldivar, A. A. F., Goh, C., Chen, W. N., & Li, Y. (2016a, July). Self-organizing tool for smart design with predictive customer needs and wants to realize Industry 4.0. In 2016 IEEE congress on evolutionary computation (CEC) (pp. 5317-5324). IEEE. doi:10.1109/CEC.2016.7748366
- Saldivar, A. A. F., Goh, C., Li, Y., Chen, Y., & Yu, H. (2016b, September). Identifying smart design attributes for Industry 4.0 customization using a clustering Genetic Algorithm. In 2016 22nd International Conference on Automation and Computing (ICAC) (pp. 408-414). IEEE. doi:10.1109/IConAC.2016.7604954
- Savazzi, S., Rampa, V., & Spagnolini, U. (2014). Wireless cloud networks for the factory of things: Connectivity modeling and layout design. IEEE Internet of Things Journal, 1(2), 180-195. doi:10.1109/JIOT.2014.2313459
- Shellshear, E., Berlin, R., & Carlson, J. S. (2015). Maximizing smart factory systems by incrementally updating point clouds. IEEE Computer Graphics and Applications, 35(2), 62-69. doi: 10.1109/MCG.2015.38
- Tao, F., Tang, Y., Zou, X., & Qi, Q. (2019). A field program-mable gate array implemented fibre channel switch for big data communication towards smart manufacturing. Robotics and Computer-Integrated Manufacturing, 57, 166-181. doi:10.1016/j.rcim.2018.12.005
- Tarallo, A., Mozzillo, R., Di Gironimo, G., & De Amicis, R. (2018). A cyber-physical system for production monitoring of manual manufacturing processes. International Journal on Interactive Design and Manufacturing, 12(4), 1235-1241. doi:10.1007/s12008-018-0493-5
- Thompson, K. D. (2014, April 25). Smart manufacturing operations planning and control program. NIST. Retrieved August 27, 2020, from https://www.nist.gov/programs-projects/smart-manufacturing-operations-planning-and-control-program
- Wong, W. K., Chan, C. K., & Ip, W. H. (2000). Optimization of spreading and cutting sequencing model in garment manufacturing. Computers in Industry, 43(1), 1-10. doi:10.1016/S0166-3615(00)00057-9
- Wong, W. K., Chan, C. K., & Ip, W. H. (2001). A hybrid flowshop scheduling model for apparel manufacture. International Journal of Clothing Science and Technology, 13(2), 115-131. doi:10.1108/09556220110390737
- Wong, W. K. (2003a). A selection of a fabric-cutting system configuration in different types of apparel manufacturing environments. The International Journal of Advanced Manufacturing Technology, 22(9-10), 641-648. doi:10.1007/s00170-003-1567-4
- Wong, W. K. (2003b). Optimisation of apparel manufacturing resource allocation using a generic optimised table-planning model. The International Journal of Advanced Manufacturing Technology, 21(12), 935-944. doi:10.1007/s00170-002-1414-z
- Wong, W. K., Chan, C. K., Kwong, C. K., Mok, P. Y., & Ip, W. H. (2005a). Optimization of manual fabric-cutting process in apparel manufacture using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 27(1-2), 152-158. doi:10.1007/s00170-004-2161-0
- Wong, W. K., Leung, S. Y. S., & Au, K. F. (2005b). Real-time GA-based rescheduling approach for the pre-sewing stage of an apparel manufacturing process. The International Journal of Advanced Manufacturing Technology, 25(1-2), 180-188. doi:10.1007/s00170-003-1819-3
- Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access, 7, 19990-19999. doi:0.1109/ACCESS.2018.2890566 https://doi.org/10.1109/ACCESS.2018.2890566
- Yoon, S., Um, J., Suh, S. H., Stroud, I., & Yoon, J. S. (2019). Smart Factory Information Service Bus (SIBUS) for manufacturing application: Rquirement, architecture and implementation. Journal of Intelligent Manufacturing, 30(1), 363-382. doi:10.1007/s10845-016-1251-9
- Zamfirescu, C. B., Pirvu, B. C., Schlick, J., & Zuehlke, D. (2013). Preliminary insides for an anthropocentric cyber-physical reference architecture of the smart factory. Studies in Informatics and Control, 22(3), 269-278. doi:10.24846/v22i3y201303
- Zeng, X., Wong, W. K., & Leung, S. Y. S. (2012). An operator allocation optimization model for balancing control of the hybrid assembly lines using Pareto utility discrete differential evolution algorithm. Computers & Operations Research, 39(5), 1145-1159. doi:10.1016/j.cor.2011.07.020
- Zhang, Y., Wang, W., Wu, N., & Qian, C. (2016). IoT-enabled real-time production performance analysis and exception diagnosis model. IEEE Transactions on Automation Science and Engineering, 13(3), 1318-1332. doi:10.1109/TASE.2015.2497800
- Zheng, M., & Ming, X. (2017). Construction of cyber-physical system-integrated smart manufacturing workshops: A case study in automobile industry. Advances in Mechanical Engineering, 9(10), 1-17. doi:10.1177/1687814017733246
- Zhong, R. Y. (2018, March). Analysis of RFID datasets for smart manufacturing shop floors. In 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC) (pp. 1-4). IEEE. doi:10.1109/ICNSC.2018.8361321
- Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: A review. Engineering, 3(5), 616-630. doi:10.1016/J.ENG.2017.05.015