DOI QR코드

DOI QR Code

다른 온도 조절 상태에서 분자 동역학에서 콜라겐 단백질의 거동

The behavior of collagen-like molecules in response to different temperature setting methods in steered molecular dynamic simulation

  • 투고 : 2020.10.13
  • 심사 : 2020.10.19
  • 발행 : 2020.10.30

초록

타입 1 콜라겐 단백질은 인체 내에서 가장 많이 존재하는 단백질이다. 이 단백질은 점탄성 거동을 보이며 이는 힘줄에서도 찾아볼 수 있다. 분자동역학 시뮬레이션 방법에는 rescaling 방법과 reassignment 방법으로 온도를 조절할 수 있다. rescaling 방법은 온도를 주어진 온도로 책정하는 방법이고, reassignment 방법은 원하는 온도로 맥스웰 분포를 이용하여서 온도를 책정하는 방법이다. 우리는 reassignment 방법에서 콜라겐 단백질의 거동이 시간에 따라서 변화하는 현상을 찾아내었다. 반면에 rescaling 방법에서는 시간에 무관하게 거동하였다. 콜라겐에 다른 속도로 인장을 가하였을 경우, 예를 들어 0.5, 1, 2, 5 Å/ps의 속도로 40 Å까지 힘을 가했을 경우, rescaling 방법에서는 속도에 따른 변화가 거의 없었던 반면, reassignment 방법의 경우 대략 80nm, 100nm, 130nm, 180nm까지 인장이 되었음을 보여준다. 이 현상에 대한 물리학적 의미를 명확하게 규명하지는 못하였지만, 단백질에 관한 시뮬레이션을 실행하는데 있어서 주의를 기울여 수행하여야 한다는 점에서 이 논문의 가치가 있다고 생각한다.

Collagen type I is the most abundant protein in the human body. It shows viscoelastic behavior, which is what confers tendons with their viscoelastic properties. There are two different temperature setting methods in molecular dynamics simulations, namely rescaling and reassignment. The rescaling method maintains the temperature by scaling the given temperature, while the reassignment method sets the temperature according to a Maxwell distribution at the target temperature. We observed time-dependent behavior when the reassignment method was applied in tensile simulation, but not when the rescaling method was applied. Time-dependent behavior was observed only when the reassignment method was applied or when one side of the collagen molecule was stretched to a greater extent than the other side. As result, the collagen is elongated to 80nm, 100nm, 130nm, and 180nm, respectively, when the collagen is pulled by different velocities, 0.5, 1, 2, and 5 Å/ps, up to 40 Å. The results do not provide a detailed physical explanation, but the phenomena illustrated in this result are important for caution when further simulations are performed.

키워드

참고문헌

  1. S. R. Ahuja, K. D. Hong, K. S. Hong, "The Rapport Multimedia Conferencing System: A Software Overviews", Proc. of 2nd IEEE Conference on Computer Workstations, pp. 52-58, March, 1988.
  2. Kramer, R.Z., Venugopal, M.G., Bella, J., Mayville, P., Brodsky, B., Berman, H.M. "Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair", J. Mol. Biol., 301(5), pp. 1191-1205, 2000 https://doi.org/10.1006/jmbi.2000.4017
  3. Hulmes, D.J.S. Collagen Diversity, Synthesis and Assembly. In Collagen: Structure and Mechanics (Ed. P.Fratzl, 2008, 15-47, Springer Science+Business Media, LLC, New York, NY)
  4. Balooch, M., Wu-MAgidi, I-C., Balazs, A., Lundkvist, A.S., Marshall, S.J., Marshall, G.W., Siekhaus, W.J., Kinney, J.H. "Viscoelastic properties of demineralized human dentin measured in water with stomic force microscope(AFM)-based indentation", Journal of Biomedical Materials Research (Part A), 40(4), pp. 539-544, 1998 https://doi.org/10.1002/(SICI)1097-4636(19980615)40:4<539::AID-JBM4>3.0.CO;2-G
  5. Sun, Y.L., Luo, Z.P., Fertala, A. An, K.N. "Direct quantification of the flexibility of type I collagen monomer", Biochemical and Biophysical Research Commnunications, 295(2), pp. 382-386, 2002 https://doi.org/10.1016/S0006-291X(02)00685-X
  6. Zhang, D., Chippada, U. Jordan, K. "Effect of the Structural Water on the Mechanical Properties of Collagen-like Microfibrils: A Molecular Dynamics Study", Annals of Biomedical Engineering, 35(7), 1216-1230, 2007 https://doi.org/10.1007/s10439-007-9296-8
  7. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J.,Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W.,E. III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M. "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins", J. Phys. Chem. B, 102(18), pp. 3586-3616, 1998 https://doi.org/10.1021/jp973084f
  8. Puxkandl, R., Zizak, I., Paris, O., Keckes, Tesch, W., Bernstorff, S., Purslow, P., Fratzl, P. "Viscoelastic properties of collagen: synchrotron radiation investigations and structural model", Phil. Trans. R. Soc.Lond.B, 357(1418), pp. 191-197, 2002 https://doi.org/10.1098/rstb.2001.1033
  9. Silver, F.H., Landis, W.J. Viscoelasticity, Energy Storage and Transmission and Dissipation by Extracellular Matrices in Vertebrates, In Collagen: Structure and Mechanics (Ed. P.Fratzl, 2008, 15-47, Springer Science+Business Media, LLC, New York, NY)
  10. Gautieri, A., Buehler, M.J., Redaelli, A. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. Journal of The Mechancial Behavior of Biomedical materials, 2(2), pp. 130-137, 2009 https://doi.org/10.1016/j.jmbbm.2008.03.001