DOI QR코드

DOI QR Code

LRF 센서를 이용한 글로벌 맵 기반의 적응형 이동 장애물 회피 알고리즘 개발

Development of Adaptive Moving Obstacle Avoidance Algorithm Based on Global Map using LRF sensor

  • 투고 : 2020.09.10
  • 심사 : 2020.10.12
  • 발행 : 2020.10.30

초록

본 논문에서는 고정된 장애물이 포함된 글로벌 맵 환경에서 LRF 센서만을 가진 자율이동 로봇이 이동장애물을 회피하기 위한 알고리즘을 제안한다. 우선 이동장애물을 회피하기 위해 LRF 거리 센서 데이터와 글로벌 맵을 이용하여 이동장애물을 추출한다. 추출된 이동장애물과 자율이동 로봇의 상대적인 벡터 성분의 합을 이용해 타원 형태의 안전반경을 생성한다. 생성된 안전반경을 고려하여 자율이동 로봇이 이동장애물을 회피하고 목적지에 도착할 수 있도록 한다. 제안된 알고리즘을 검증하기 위해 정량적인 분석 방법을 사용하여 기존 알고리즘과 비교하고 분석한다. 분석 방법은 이동장애물이 없을 때를 기준으로 제안된 알고리즘과 기존의 알고리즘의 경로의 길이와 주행 시간을 비교한다. 제안된 알고리즘은 이동장애물의 상대적 속도와 방향을 고려하여 회피할 수 있어서 경로와 주행 시간 모두 기존의 알고리즘보다 높은 성능을 보인다.

In this paper, the autonomous mobile robot whit only LRF sensors proposes an algorithm for avoiding moving obstacles in an environment where a global map containing fixed obstacles. First of all, in oder to avoid moving obstacles, moving obstacles are extracted using LRF distance sensor data and a global map. An ellipse-shaped safety radius is created using the sum of relative vector components between the extracted moving obstacles and of the autonomuos mobile robot. Considering the created safety radius, the autonomous mobile robot can avoid moving obstacles and reach the destination. To verify the proposed algorithm, use quantitative analysis methods to compare and analyze with existing algorithms. The analysis method compares the length and run time of the proposed algorithm with the length of the path of the existing algorithm based on the absence of a moving obstacle. The proposed algorithm can be avoided by taking into account the relative speed and direction of the moving obstacle, so both the route and the driving time show higher performance than the existing algorithm.

키워드

참고문헌

  1. Se-Kwon Oh, Joo-Min Kim, Dae-Won Kim, "Development of a Moving Obstacle Detection Algorithm using a LRF Sensor in Dynamic Environments", KIEE, 1385-1386, 2012.7
  2. GEOVANY ARAUJO BORGES, MARIE ALDON, "Line Extraction 2D Range Images for Mobile Robotics", Journal of Intelligent and Robotics Systems, 40, 267-297, 2004 https://doi.org/10.1023/B:JINT.0000038945.55712.65
  3. J. Borenstein and Y. Koren, "The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robot," IEEE Journal of Robotics and Automation, Vol. 7 No. 3, pp.278-288, 1991. https://doi.org/10.1109/70.88137
  4. J. Borenstein and Y. Koren, "Real-Time Obstacle Avoidance for Fast Mobile Robots," IEEE Transaction on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp.1179-1187, 1989. https://doi.org/10.1109/21.44033
  5. Se-Kwon Oh, "Development of a Global Map-Based Moving Obstacle Detection and Avoidance Algorithm using a LRF Sensor in Dynamic Environments", Myoungji University, 16-25, 2013
  6. Hongryeol Kim, Joomin Kim, and Daewon Kim, "Development of Coordinated Scheduling Strategy with Network Response Time Analysis for the CAN-Based Distributed Control systems," Proceeding of 2004 IEEE/RSJ International Conference on Intelligent Robot and Systems, pp.2099-2104, 2004.
  7. J. Vandorpe, H. Van Brussel, H. Xu," Exact Dynamic Map Building for a Mobile Robot using Geometrical Primitives Produced by a 2D Range Finder",
  8. WALTER GANDER, GENE H. GOLUB and ROLF STREBEL, "LEAST-SQUARE FITTING OF CIRCLES AND ELLIPSES", BIT, 40, 558-578, 1994
  9. Jin-Woo Kim, "Development of an Efficient Obstacle Avoidance Comprensation Algorithm Considering a Network Delay for a Network-based Autonomous Mobile Robot", Myoungji University, 21-31, 2011