DOI QR코드

DOI QR Code

CMOS X-Ray 검출기를 위한 위상 고정 루프의 전하 펌프 회로

A Charge Pump Circuit in a Phase Locked Loop for a CMOS X-Ray Detector

  • Hwang, Jun-Sub (Department of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Lee, Yong-Man (HW Part, RY Lab, Rayence) ;
  • Cheon, Ji-Min (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 투고 : 2020.09.29
  • 심사 : 2020.10.12
  • 발행 : 2020.10.30

초록

본 논문에서는 CMOS X-Ray 검출기의 메인 클럭을 발생시키는 위상 고정 루프(phase locked loop, PLL)을 위한 전류 불일치를 줄이면서도 넓은 동작 범위를 가지는 전하 펌프(charge pump, CP) 회로를 제안하였다. CP 회로의 동작 범위와 전류 불일치는 CP 회로를 구성하는 전류원 회로의 동작 범위와 출력 저항에 의해서 결정된다. 제안된 CP 회로는 넓은 동작 범위를 확보하기 위한 wide operating 전류 복사 바이어스 회로와 전류 불일치를 줄이기 위한 출력 저항이 큰 캐스코드 구조의 전류원으로 구현하였다. 제안된 wide operating range 캐스코드 CP 회로는 350nm CMOS 공정을 이용하여 칩으로 제작되었으며 소스 측정 장치(source measurement unit)을 활용하여 전류 일치 특성을 측정하였다. 이때 전원 전압은 3.3V이고 CP 회로의 전류 ICP=100㎂이었다. 제안된 CP 회로의 동작 범위 △VO_Swing=2.7V이고 이때 최대 전류 불일치는 5.15%이고 최대 전류 편차는 2.64%로 측정되었다. 제안된 CP 회로는 낮은 전류 불일치 특성을 가지면서 광대역 주파수 범위에 대응할 수 있으므로 다양한 클럭 속도가 필요한 시스템에 적용할 수 있다.

In this paper, we proposed a charge pump (CP) circuit that has a wide operating range while reducing the current mismatch for the PLL that generates the main clock of the CMOS X-Ray detector. The operating range and current mismatch of the CP circuit are determined by the characteristics of the current source circuit for the CP circuit. The proposed CP circuit is implemented with a wide operating current mirror bias circuit to secure a wide operating range and a cascode structure with a large output resistance to reduce current mismatch. The proposed wide operating range cascode CP circuit was fabricated as a chip using a 350nm CMOS process, and current matching characteristics were measured using a source measurement unit. At this time, the power supply voltage was 3.3 V and the CP circuit current ICP = 100 ㎂. The operating range of the proposed CP circuit is △VO_Swing=2.7V, and the maximum current mismatch is 5.15 % and the maximum current deviation is 2.64 %. The proposed CP circuit has low current mismatch characteristics and can cope with a wide frequency range, so it can be applied to systems requiring various clock speed.

키워드

참고문헌

  1. S. Lee, J. Jeong, T. Kim, C. Park, T. Kim, and Y. Chae, "A 5.2-Mpixel 88.4-dB DR 12-in CMOS X-Ray Detector With 16-bit Column-Parallel Continuous-Time Incremental ${\Delta}{\Sigma}$ ADCs", IEEE J. Solid-State Circuits, Early Access.
  2. G. D. Geronimo, P. Rehak, K. Ackley, G. Carini, W. Chen, J. Fried, J. Keister, S. Li, Z. Li, D. A. Pinelli, D. P. Siddons, E. Vernon, J. A. Gaskin, B. D. Ramsey, and T. A. Tyson, "ASIC for SDD- based X-ray spectrometers", IEEE Trans. Nucl. Sci., vol. 57, no. 3, pp. 1654-1663, Jun. 2010. https://doi.org/10.1109/TNS.2010.2044809
  3. F. Schembari, R. Quaglia, G. Bellotti, and C. Fiorini, "SFERA: An integrated circuit for the readout of X and ${\gamma}$-ray detectors", IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1797-1807, Jun. 2016. https://doi.org/10.1109/TNS.2016.2565200
  4. G. Bellotti, A. D. Butt, M. Carminati, C. Fiorini, L. Bombelli, G. Borghi, C. Piemonte, N. Zorzi, and A. Balerna, "ARDESIA detection module: A four-channel array of SDDs for Mcps X-Ray spectroscopy in synchrotron radiation applications", IEEE Trans. Nucl. Sci., vol. 65, no. 7, pp. 1355-1364, Jul. 2018. https://doi.org/10.1109/TNS.2018.2838673
  5. K. Uesugi, M. Hoshino, and N. Yagi, "Comparison of lens- and fibercoupled CCD detectors for X-ray computed tomography", J. Synchrotron. Rad., vol. 18, no. 2, pp. 217-223, Mar. 2011. https://doi.org/10.1107/S0909049510044523
  6. H. K. Kim, J. K. Ahn, and G. Cho, "Development of a lens-coupled CMOS detector for an X-ray inspection system", Nucl. Instrum. Methods Phys. Res. A, vol. A545, no. 1/2, pp. 210-216, Jun. 2005.
  7. H. Liu, H. Jiang, L. L. Fajardo, A. Karellas, and W. R. Chen, "Lens distortion in optically coupled digital X-ray imaging", Med. Phys., vol. 27, no. 5, pp. 906-912, May 2000. https://doi.org/10.1118/1.598956
  8. E. Kotter and M. Langer, "Digital radiography with large-area flat-panel detectors", Eur. Radiol., vol. 12, no. 10, pp. 2562-2570, Oct. 2002. https://doi.org/10.1007/s00330-002-1350-1
  9. M. Farrier, T. G. Achterkirchen, G. P. Weckler, and A. Mrozack, "Very large area CMOS active-pixel sensor for digital radiography", IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2623-2631, Nov. 2009. https://doi.org/10.1109/TED.2009.2031001
  10. R. Reshef, T. Leitner, S. Alfassi, E. Sarig, N. Golan, O. Berman, A. Fenigstein, H. Wolf, G. Hevel, S. Vilan, and A. Lahav, "Large-format medical X-ray CMOS image sensor for high resolution high frame rate applications", Proc. Int. Image Sensor Workshop, Jun. 2009, pp. 1-4.
  11. L. Korthout, D. Verbugt, J. Timpert, A. Mierop, W. D. Haan, W. Maes, J. D. Meulmeester, W. Muhammad, B. Dillen, H. Stoldt, I. Peters, and E. Fox, "A wafer-scale CMOS APS imager for medical X-ray applications", Proc. Int. Image Sensor Workshop, Jun. 2009, pp. 1-5.
  12. S. K. Heo, J. Kosonen, S. H. Hwang, T. W. Kim, S. Yun, and H. K. Kim, "12-inch wafer-scale CMOS active-pixel sensor for digital mammography", Proc. SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, vol. 7961, Mar. 2011, Art. no. 79610O.
  13. M.-S. Shin, J.-B. Kim, Y.-R. Jo, M.-K. Kim, B.-C. Kwak, H.-C. Seol, and O.-K. Kwon, "CMOS X-ray detector with column-parallel 14.3-bit extended- counting ADCs", IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1169-1177, Mar. 2013. https://doi.org/10.1109/TED.2013.2238674
  14. Y.-R. Jo, S.-K. Hong, and O.-K. Kwon, "CMOS flat-panel X-ray detector with dual-gain active pixel sensors and column-parallel readout circuits", IEEE Trans. Nucl. Sci., vol. 61, no. 5, pp. 2472-2479, Oct. 2014. https://doi.org/10.1109/TNS.2014.2343459
  15. J.-B. Kim, S.-K. Hong, and O.-K. Kwon, "A high-speed wafer-scale CMOS X-ray detector with column-parallel ADCs using oversampling binning method", IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 888-895, Mar. 2015. https://doi.org/10.1109/TED.2014.2386533
  16. Y.-R. Jo, S.-K. Hong, and O.-K. Kwon, "Atileable CMOS X-ray line detector using time-delay-integration with pseudo multi sampling for large-sized dental X-ray imaging systems", IEEE Trans. Electron Devices, vol. 64, no. 1, pp. 211-216, Jan. 2017. https://doi.org/10.1109/TED.2016.2632131
  17. S. Naday, E. F. Bullard, S. Gunn, J. E. Brodrick, E. O. O'Tuairisg, A. McArthur, H. Amin, M. B. Williams, P. G. Judy, and A. Konstantinidis, "Optimised breast tomosynthesis with a novel CMOS flat panel detector", Proc. 10th Int. Workshop Digit. Mammography, vol. 6136, LNCS, Jun. 2010, pp. 428-435.
  18. D. Scheffer, "A wafer scale active pixel CMOS image sensor for generic X-ray radiology", Proc. SPIE, 2007, p. 65100O.
  19. X. Liu, A. Byczko, M. Choi, L. Chung, H. Do, B. Fowler, R. Ispasoiu, K. Joshi, T. Miller, A. Nagy, D. Reaves, B. Rodricks, D. Teeter, G. Wang, and F. Xiao, "CMOS digital intraoral sensor for X-ray radiography", Proc. SPIE, 2011, p. 79614M.
  20. S. K. Heo, S. K. Park, S. H. Hwang, D. A. Im, J. Kosonen, T. W. Kim, S. Yun, and H. K. Kim, "Development of a large-area CMOS-based detector for real-time X-ray imaging", Proc. SPIE, 2010, p. 76223T.
  21. R. Reshef, T. Leitner, S. Alfassi, E. Sarig, N. Golan, O. Berman, A. Fenigstein, H. Wolf, G. Hevel, S. Vilan, and A. Lahav, "Large format medical X-ray CMOS image sensor for high resolution high frame rate applications", Proc. Int. Image Sens. Workshop, Bergen, Norway, Jun. 2009.
  22. S. Lim, J. Lee, D. Kim, and G. Han, "A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs", IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 393-398, Mar. 2009. https://doi.org/10.1109/TED.2008.2011846
  23. S. Lim, J. Cheon, Y. Chae, W. Jung, D.-H. Lee, M. Kwon, K. Yoo, S. Ham, and G. Han, "A 240-frames/s 2.1-Mpixel CMOS image sensor with column-shared cyclic ADCs", IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2073-2083, Sep. 2011. https://doi.org/10.1109/JSSC.2011.2144010
  24. S. Yoshihara, Y. Nitta, M. Kikuchi, K. Koseki, Y. Ito, Y. Inada, S. Kuramochi, H. Wakabayashi, M. Okano, H. Kuriyama, J. Inutsuka, A. Tajima, T. Nakajima, Y. Kudoh, F. Koga, Y. Kasagi, S. Watanabe, and T. Nomoto, "A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS Image Sensor With Seamless Mode Change", IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2998-3006, Dec. 2006. https://doi.org/10.1109/JSSC.2006.884868
  25. T. Toyama, K. Mishina, H. Tsuchiya, T. Ichikawa, H. Iwaki, Y. Gendai, H. Murakami, K. Takamiya, H. Shiroshita, Y. Muramatsu, and T. Furusawa, "A 17.7Mpixel 120fps CMOS Image Sensor with 34.8Gb/s Readout", Proc. IEEE Int. Solid-State Circuits Conf., pp. 420-421, 2011.
  26. S. Okura, O. Nishikido, Y. Sadanaga, Y. Kosaka, N. Araki, K. Ueda, and F. Morishita, "A 3.7 M-Pixel 1300-fps CMOS Image Sensor With 5.0 G-Pixel/s High-Speed Readout Circuit", IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1016-1024, Apr. 2015. https://doi.org/10.1109/JSSC.2014.2387201
  27. C. C.-M. Liu, M. M. Mhala, C.-H. Chang, H. Tu, P.-S. Chou, C. Chao, and F.-L. Hsueh, "A 1.5V 33Mpixel 3D-Stacked CMOS Image Sensor with Negative Substrate Bias", Proc. IEEE Int. Solid-State Circuits Conf., pp. 124-125, 2016.
  28. D. Zhong, Y. Han, J. Sun, Q. Zhou, R. C. C. Cheung, and W. Sui, "A perfectly current matched charge pump with wide dynamic range for ultra low voltage application", IEICE ELEX, vol. 11, no. 23, pp. 1-6, Nov. 2014.
  29. M Jalalifar and G-S Byun, "Near-threshold charge pump circuit using dual feedback loop", IET Electron. Lett., vol. 49, no. 23, pp. 1436-1438, Nov. 2013. https://doi.org/10.1049/el.2013.1304
  30. N. Joram, R. Wolf, and F. Ellinger, "High swing PLL charge pump with current mismatch reduction", IET Electron. Lett., vol. 50, no. 9, pp. 661-663, Apr. 2014. https://doi.org/10.1049/el.2014.0804
  31. M. Johnson and E. Hudson, "A variable delay line PLL for CPU-coprocessor synchronization", IEEE J. Solid-State Circuits, vol. 23, no. 10, pp. 1218-1223, Oct. 1988. https://doi.org/10.1109/4.5947
  32. I. A. Young, J. K. Greason, and K. L. Wong, "A PLL Clock Generator with 5 to 110MHz of Lock Range for Microprocessors", IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1599-1607, Nov. 1992. https://doi.org/10.1109/4.165341
  33. Larsson, P., "A 2.1600-MHz CMOS clock recovery PLL with low-Vdd capability", IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1951-1960, Dec. 1999. https://doi.org/10.1109/4.808920
  34. D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York:Wiley, 1997.