References
- Michael Fusco, Multilayer Protective Coatings for High-Level Nuclear Waste Storage Containers, PhD dissertation, North Carolina State University, 2016.
- V. Udmale, D. Mishr, R. Gadhave, D. Pinjare, R. Yamgar, Development trends in conductive nano-composites for radiation shielding, Orient. J. Chem. 29 (3) (2013) 927-936, https://doi.org/10.13005/ojc/290310.
- M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, A.A. Thabet, Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials, J. Clean. Prod. 176 (2018) 276-287, https://doi.org/10.1016/j.jclepro.2017.12.100.
- H. Wang, H. Zhang, Y. Su, T. Liu, H. Yu, Y. Yang, B. Guo, Preparation and radiation shielding properties of Gd2O3/PEEK composites, Polym. Compos. 36 (4) (2015) 651-659, https://doi.org/10.1002/pc.22983.
- S. Nambiar, J.T. Yeow, Po,ymer-composite materials for radiation protection, ACS Appl. Mater. Interfaces 4 (11) (2012) 5717-5726, https://doi.org/10.1021/am300783d.
- Winter, H., Brown, A. L., & Goforth, A. M., Bismuth-Based Nano-and Microparticles in X-Ray Contrast, Radiation Therapy, and Radiation Shielding Applications. Bismuth: Advanced Applications and Defects Characterization, intechopen, DOI: 10.5772/intechopen.76413.https://doi.org/10.5772/intechopen.76413.
- N. Vana, M. Hajek, T. Berger, M. Fugger, P. Hofmann, Novel shielding materials for space and air travel, Radiat. Protect. Dosim. 120 (1-4) (2006) 405-409, https://doi.org/10.1093/rpd/nci670.
- T. Bel, C. Arslan, N. Baydogan, Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays, Mater. Chem. Phys. 221 (2019) 58-67, https://doi.org/10.1016/j.matchemphys.2018.09.014.
- A. Endruweit, M.S. Johnson, A.C. Long, Curing of composite components by ultraviolet radiation: a review, Polym. Compos. 27 (2) (2006) 119-128, https://doi.org/10.1002/pc.20166.
- A. Singh, Radiation processing of carbon fibre-reinforced advanced composites, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 185 (1-4) (2001) 50-54, https://doi.org/10.1016/S0168-583X(01)00753-4.
- V.J. Lopata, C.B. Saunders, A. Singh, C.J. Janke, G.E. Wrenn, S.J. Havens, Electron-beam-curable epoxy resins for the manufacture of high-performance composites, Radiat. Phys. Chem. 56 (4) (1999) 405-415, https://doi.org/10.1016/S0969-806X(99)00330-8.
- C. Decker, UV-radiation curing chemistry, Pigment Resin Technol. 30 (5) (2001) 278-286, https://doi.org/10.1108/03699420110404593.
- A. Udagawa, Y. Yamamoto, Y. Inoue, R. Chujo, Dynamic mechanical properties of cycloaliphatic epoxy resins cured by ultra-violet-and heat-initiated cationic polymerizations, Polymer 32 (15) (1991) 2779-2784, https://doi.org/10.1016/0032-3861(91)90108-U.
- P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 206 (2019) 367-377, https://doi.org/10.1016/j.saa.2018.08.038.
- P. Kaur, K.J. Singh, S. Thakur, Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system, AIP Conference Proceedings (1953), 090031, https://doi.org/10.1063/1.5032878 (2018).
- N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV, Ann. Nucl. Energy 55 (2013) 23-28, https://doi.org/10.1016/j.anucene.2012.12.011.
- G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
- J. Lopez, Microhardness testing of plastics: literature review, Polym. Test. 12 (5) (1993) 437-458, https://doi.org/10.1016/0142-9418(93)90016-I.
- W. Poltabtim, E. Wimolmala, K. Saenboonruang, Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites, Radiat. Phys. Chem. 153 (2018) 1-9, https://doi.org/10.1016/j.radphyschem.2018.08.036.
- G. Pinto, A. Jimenez-Martin, Conducting aluminum-filled nylon 6 composites, Polym. Compos. 22 (2001) 65-70, https://doi.org/10.1002/pc.10517.
Cited by
- Complete‐Lifecycle‐Available, Lightweight and Flexible Hierarchical Structured Bi 2 WO 6 /WO 3 /PAN Nanofibrous Membrane for X‐Ray Shielding and P vol.8, pp.7, 2020, https://doi.org/10.1002/admi.202002131
- Sodium alginate/bismuth (III) oxide composites for γ‐ray shielding applications vol.138, pp.19, 2020, https://doi.org/10.1002/app.50369
- Optical features of PbBr2 semiconductor thin films for radiation attenuation application vol.32, pp.12, 2020, https://doi.org/10.1007/s10854-021-06257-y
- Gamma radiation attenuation characteristics of polyimide composite with WO2 vol.137, 2020, https://doi.org/10.1016/j.pnucene.2021.103795
- The assessment of usage of epoxy based micro and nano-structured composites enriched with Bi2O3 and WO3 particles for radiation shielding vol.26, 2020, https://doi.org/10.1016/j.rinp.2021.104423
- LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding vol.13, pp.18, 2021, https://doi.org/10.3390/polym13183081
- Fabrication of new non-hazardous tungsten carbide epoxy resin bricks for low energy gamma shielding in nuclear medicine vol.5, pp.9, 2021, https://doi.org/10.1088/2399-6528/ac26de
- Optimal radiation shielding capacity and thermal properties of poly(methyl methacrylate) films enhanced with different metal complexes vol.29, pp.9, 2021, https://doi.org/10.1177/0967391121998490
- Improving photoluminescence, optical and electrical characteristics of PMMA films with gamma irradiation vol.96, pp.12, 2020, https://doi.org/10.1088/1402-4896/ac454d
- Gamma irradiation sensitivity of early hardening cement mortar vol.126, 2020, https://doi.org/10.1016/j.cemconcomp.2021.104327